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Abstract. We extend results found by Greenberg, Turetsky, and Westrick
in [7] and investigate effective properties of bases of uncountable free abelian
groups. Assuming V = L, we show that if κ is a regular uncountable cardinal
and X is a ∆1

1(Lκ) subset of κ, then there is a κ-computable free abelian
group whose bases cannot be effectively computed by X. Unlike in [7], we give
a direct construction.

1. Introduction

The recursive construction of a basis of a vector space is taught to first-year
students of linear algebra: at each step, add some vector which does not lie in the
span of the previous ones chosen. This “algorithm” works equally well in finite,
countable and uncountable-dimensional vector spaces. In the uncountable case,
this can be made precise using the framework introduced by Greenberg and Knight
for uncountable computable structure theory, using admissible computability on
uncountable cardinals [6]. In fact, just like the countable case, a single Turing
jump (relative to the diagram of the vector space) suffices. In particular, for every
cardinal κ, every κ-computable vector space (over a κ-computable field) has a basis
which is definable in Lκ.

What happens when we consider free abelian groups, objects which appear just
as simple as vector spaces? In the countable case, based on a strong notion of
independence introduced by Pontryagin [10], a similar algorithm can be performed;
Downey and Melnikov [1] used this notion to show that a single Turing jump suffices
to build a basis of a countable free abelian group. This algorithm, however, fails
badly in the uncountable case, because difficulties can arise in limit steps: it is
possible to generate an ω-sequence b0, b1, . . . of elements of a free abelian group
such that every finite initial segment of the sequence is extendible to a basis of the
group, but the whole sequence cannot. That is, the construction, which appears
perfectly fine at every finite step, “explodes” at the limit step.

In [7], the authors showed that this difficulty is fundamental: in general, there
is no way to construct bases of free abelian groups in a step-by-step recursive,
or definable, construction. Formally, what they showed (under the standard as-
suption that V = L) is that for most uncountable regular cardinals κ, there are
κ-computable free abelian groups which have no bases definable over Lκ; in fact,
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no single κ-Turing degree which is ∆1
1(Lκ) can serve as an oracle which computes

bases for all κ-computable free abelian groups. This result has two shortcomings:
(1) It does not apply to all regular uncountable cardinals κ;
(2) It does not rely on a direct construction.

These two are related. The argument in [7] relies on the complexity of identifying
which groups are free. The authors show that if κ is not weakly compact, then
the collection of free abelian groups is Σ1

1(Lκ)-complete, and in many cases (such
as successor cardinals, or the least inaccessible), is (lighface) Σ1

1(Lκ)-complete. In
these cases, this completeness result implies that searching for bases cannot be
restricted to the sets computable from a fixed ∆1

1(Lκ) oracle. It is not clear from
the construction, though, how to directly build, given a ∆1

1(Lκ) oracle X, a κ-
computable free abelian group G with no X-computable basis. And this approach
cannot work for weakly compact cardinals κ; the very compactness property of
these cardinals implies that it is in fact not very difficult to identify which groups
are free; in fact, a single jump suffices. This leaves the original question, of the
complexity of bases, open for these cardinals.

In the current paper we fully answer the original question:

Theorem 1.1 (V = L). Let κ be regular and uncountable. For any X ∈ 2κ

which is ∆1
1(Lκ) there is a κ-computable free abelian group, none of whose bases is

X-computable.

The proof of the theorem is done by a direct construction.

2. Preliminaries, and the plan of the proof

The proof of Theorem 1.1 is the combination of two distinct parts: we will
first reduce the problem to one in “computable set theory”, one which abstracts
away the algebraic part; and then give a construction solving the reduced problem.
Throughout the paper, we assume V = L. We refer the reader to [6] for the basic
definitions of κ-computability. A general reference for torsion-free abelian groups
is [5]

We start by recalling some basic concepts that were used in [7].

All groups we will discuss are abelian and torsion-free. A group G is free abelian
if it has a basis: a subset B which is linearly independent (

∑
mibi = 0 implies each

mi = 0, where mi ∈ Z and bi ∈ B) and spans G (every element of G is of the form∑
mibi for some mi ∈ Z and bi ∈ B). We will omit the adjective “abelian” and just

call these groups free.

Definition 2.1. Let G be a group. A subgroup H of G detaches in G if there is a
G-subgroup K such that G = H ⊕K. We write H | G.

Any subgroup of a free abelian group is free. A subgroup H of a free abelian
group G detaches in G if and only if some (equivalently any) basis of H can be
extended to a basis of G, if and only if the quotient G/H is free. If H detaches
in G then H detaches in any subgroup K of G containing H.

Definition 2.2. A sequence 〈Gα〉α<γ of groups of some ordinal length γ is increas-
ing if α < β implies Gα ⊆ Gβ ; it is continuous if for all limit α < γ, Gα =

⋃
β<αGβ .

A filtration of a group G is a sequence G = 〈Gα〉 such that G 〈̂G〉 is increasing and
continuous, and |Gα| 6 |α| for all α.
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If γ is regular and G is a group of universe γ then all filtrations of G agree on a
club; in fact, for club many α, Gα = G ∩ α.

Definition 2.3. Let G = 〈Gα〉α<γ be increasing and continuous. The detachment
set of G is

Div(G) = {α < γ : ∀β ∈ (α, γ) (Gα | Gβ)} .

If γ is regular and G,G
′
are two filtrations of a group of universe γ, then Div(G)

and Div(G
′
) agree on a club.

The following can essentially be found in [2]; see [3, IV.1.7].

Proposition 2.4. Suppose γ is a limit ordinal and let G = 〈Gα〉α<γ be a filtration
of a group Gγ . Suppose Gα is free for all α < γ.

(1) If Div(G) contains a γ-club, then Gγ is free.
(2) If γ is regular and Gγ is free, then Div(G) contains a γ-club.

Remark 2.5. Let γ be a limit ordinal; let G = 〈Gα〉α<γ be a filtration of a
group Gγ . Suppose that Div(G) contains a club of γ. Then

Div(G) = {α < γ : Gα | Gγ} .

The proof of Proposition 2.4 is effective. This gives the following:

Proposition 2.6. Let κ be regular and uncountable; Let G = 〈Gα〉α<κ be a
filtration of a free group G (with universe κ). The bases of G and the club subsets
of Div(G) are equicomputable modulo G. That is:

• If C is a club subset of Div(G) then there is a basis B of G such that
B 6κ C ⊕G;

• If B is a basis of G then there is a club subset C of Div(G) such that
C 6κ B ⊕ Ḡ.

The reductions in both directions are uniform. Briefly, given a club subset C =
{αi : i < κ} of Div(G), we can present G as the direct sum of κ-finite groups Hi

with Gαi
=
⊕

j<iHj , and combine bases of the groups Hi to a basis of G. In the
other direction, given a basis B of G, we let C be the collection of α such that B∩α
generates Gα.

From now, we fix a regular uncountable cardinal κ. Recall the lexicographic
ordering on 2κ: S < T if for the greatest δ < κ such that S � δ = T � δ we have
δ ∈ T \S. If 〈Si〉i6i∗ is a lexicographically nondecreasing sequence (for some ordinal
i∗), i < j 6 i∗ and Si � δ = Sj � δ for some δ < κ, then Sr � δ is constant for all
r ∈ [i, j].

The lexicographic ordering is complete. A lexicographically nondecreasing se-
quence 〈Si〉i6i∗ is continuous if for all limit j 6 i∗, Sj is the least upper bound of
〈Si〉i<j . This means that if j 6 i∗ is a limit, δ < κ and Si � δ is constant for some
final segment of i < j, then Si � δ + 1 is also constant for some final segment of
i < j.

A nondecreasing approximation of a set S ⊆ κ is a uniformly κ-computable
sequence 〈Si〉i<κ which is lexicographically nondecreasing such that S = supi<κ Si.
Sets which have nondecreasing approximations are called κ-left-c.e. If S is κ-left-c.e.
then it has a nondecreasing approximation which is also continuous.
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We say that a set S ⊆ κ is nowhere stationary if for all α 6 κ of uncountable
cofinality, S ∩ α is nonstationary in α.

To avoid repetition, we make the following definition.

Definition 2.7. We say that a nowhere stationary, κ-left-c.e. set S ⊆ κ is nicely
thin if there is a continuous nondecreasing approximation 〈Si〉i<κ of S such that for
all i < κ, Si is nowhere stationary, and every α ∈ Si is a limit ordinal of countable
cofinality.

As promised, the following proposition distills the algebraic aspects of our con-
struction.

Proposition 2.8. If S ⊂ κ is nicely thin, then there is a κ-computable free abelian
group G and a ∆0

2(Lκ) filtration G of G such that Div(G) = κ \ S.

The second part of the proof is:

Proposition 2.9. Let X be ∆1
1(Lκ). There is a nicely thin set S ⊆ κ which

intersects every X-computable club set.

Proof of Theorem 1.1, given Propositions 2.8 and 2.9. Let X be ∆1
1(Lκ); we may

assume that X >κ ∅′. Let S ⊆ κ be a nicely thin set given by Proposition 2.9.
Let G and G be given by Proposition 2.8 from this set S. Since G is ∆0

2(Lκ) and
X >κ ∅′, we have X >κ G. Suppose that B is a basis of G. By Proposition 2.6,
there is a club set C ⊆ Div(G) such that C 6κ B ⊕ G. So C is disjoint from
S = κ \Div(G), whence C 
κ X. Hence B 
κ X as well. �

The next two sections are devoted to the proofs of Propositions 2.8 and 2.9,
respectively.

3. Building groups from left-c.e. sets

In this section we prove Proposition 2.8. The main tool we use is the “twisting”
of an increasing ω-sequence of free groups, which is Prop. 2.16 of [7].

Proposition 3.1. There is a κ-computable process which given a κ-finite increasing
ω-sequence 〈Hn〉 of free groups such that Hn | Hn+1 for all n, produces a κ-finite
free group G ⊇ Hω =

⋃
nHn (with |G| = |Hω|) such that every Hn detaches in G

but Hω does not detach in G.

This construction relies on a copy G of Z(ω+1) such that G/Z(ω) is not free;
Pontryagin’s criterion implies that each finitely generated subgroup of Z(ω) detaches
in G. In Proposition 3.1, note that each Hn detaches in Hω.

First, we show how to prove Proposition 2.8 in the simpler case when S is κ-
computable (rather than merely κ-left-c.e.). We can then produce both G and G
to be κ-computable. The construction follows the proof of [7, Thm.3.1]. We define
the sequence 〈Gα〉α<κ by effective κ-recursion (Σ1 recursion over Lκ). During the
construction we ensure that each Gα is free, and for all β < α, if β /∈ S then
Gβ | Gα. The construction has three cases.
1. α is a limit: We must define Gα =

⋃
β<αGβ . Since S ∩ α is nonstationary in α

and Div(〈Gβ〉β<α) ⊇ α \ S, Gα is free (Proposition 2.4). Further, if β ∈ α \ S then
as β ∈ Div(〈Gβ〉β<α), we have Gβ | Gα (Remark 2.5).
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2. Defining Gα+1 when α /∈ S: We let Gα+1 = Gα ⊕ Z. Since Gα is free, so is
Gα+1. We certainly have Gα | Gα+1, and for all β ∈ α \ S, by induction, Gβ | Gα,
and so Gβ | Gα+1 as well.
3. Defining Gα+1 when α ∈ S: Since α ∈ S, cf(α) = ω, so we can effectively find a
cofinal ω-sequence 〈βn〉 in α; by replacing each βn by its successor, we may assume
that each βn /∈ S. Thus, by induction, for all n, Gβn | Gβn+1 , and Gα =

⋃
nGβn .

We then apply Proposition 3.1 to the sequence 〈Gβn
〉 to obtain a free group Gα+1

extending Gα such that Gα - Gα+1 for all n. If β 6 α and β /∈ S, then β < α; for
sufficiently large n we have βn > β. By induction, Gβ | Gβn

, and by construction,
Gβn

| Gα+1, so Gβ | Gα+1 as required.

We define G = Gκ =
⋃
α<κGα. It is κ-computable since it is the union of

a κ-computable sequence of κ-finite groups. Case 1 above holds for κ as well:
Div(〈Gα〉) ⊇ κ \ S; since S is nonstationary in κ, G is free. On the other hand,
for all α ∈ S, by construction, Gα - Gα+1, so β /∈ Div(〈Gα〉); overall, we see that
Div(〈Gα〉) = κ \ S as required.

We now consider the general case, when S is κ-left-c.e. The construction is an
elaboration on the proof of [7, Thm.3.2]. The idea is that if at stage s < κ we see a a
change in S at some small α < s, then we keep the group that we have constructed
so far, but “squash” the filtration so that the old Gs becomes a subgroup of the
new Gα. The fact that the smallest such change is into S allows us to introduce a
twist (otherwise we would need to remove a twist, which is impossible).

Let S ⊂ κ be nicely thin, and let 〈St〉t<κ be an approximation satisfying Defini-
tion 2.7. For brevity, we let Sκ = S.

We now construct, by recursion on t 6 κ, filtrations Gt = 〈Gtα〉α6γ(t) (for
ordinals γ(t) 6 t), satisfying:

(a) Gsγ(s) ⊆ Gtγ(t) for s 6 t 6 κ, and if t is a limit then Gtγ(t) =
⋃
s<tG

s
γ(s).

That is, the sequence 〈Gsγ(s)〉s6κ is increasing and continuous.
(b) Gtγ(t) is free and Div(Gt) = γ(t) \ St for all t 6 κ. Indeed, for all β < γ(t),

if β /∈ St then Gtβ | Gtγ(t), while if β ∈ St then Gtβ - Gtβ+1.
(c) For all s 6 t 6 κ and α 6 γ(s), if Ss � α = St � α then α 6 γ(t) and

Gsα = Gtα.
(d) For all s < t 6 κ and α 6 γ(t), if Ss �α 6= St �α then Gsγ(s) ⊆ G

t
α.

We first consider the successor case. Suppose that Gs has been defined for all
s 6 t; we show how to define Gt+1. First, we let

δ = max {β 6 γ(t) : St �β = St+1 �β} .

For β 6 δ we let Gt+1
β = Gtβ . We let γ(t + 1) = δ + 1, and so we need to define

Gt+1
δ+1. There are two sub-cases. If δ /∈ St+1, then δ /∈ St, and so the maximality

of δ shows that δ = γ(t). In this sub-case we simply let Gt+1
δ+1 = Gtδ ⊕ Z.

Suppose that δ ∈ St+1. Either δ = γ(t), or δ /∈ St (by the maximality of δ). In
either case, Gtδ | Gtγ(t). Write Gtγ(t) = Gtδ ⊕ K (where K may be trivial). Since
cf(δ) = ω (as δ ∈ St+1), we choose a sequence 〈βn〉 cofinal in δ and disjoint from
St+1. By (b), Gtβn

| Gtβn+1
for all n < ω, so we appeal to Proposition 3.1 to get a

free group G ⊃ Gtδ in which every Gβn
detaches, but Gtδ - G. We let Gt+1

δ+1 = G⊕K.
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By design, Gtγ(t) ⊆ Gt+1
δ+1 = Gt+1

γ(t+1), verifying (a) for stage t+ 1. We verify (b).
For β < δ, if β ∈ St+1 then β ∈ St and then Gtβ - Gtβ+1, which shows that
β /∈ Div(Gt+1); if β /∈ St+1 then β /∈ St. If δ /∈ St+1 then Gtβ | Gtδ | G

t+1
δ+1, showing

that β ∈ Div(Gt+1). If δ ∈ St+1 then for some n, β < βn, and Gtβ | Gtβn
| Gt+1

δ+1,
showing that β ∈ Div(Gt+1). (c) between t and t + 1 follows from the definition
of δ. In general, for s < t, if α 6 γ(s) and Ss �α = St+1 �α, then Ss �α = St �α
as well; by induction, α 6 γ(t), and so α 6 δ and Gsα = Gtα = Gt+1

α . For (d), let
s < t + 1, α 6 γ(t + 1), and suppose that Ss �α 6= St+1 �α; we need to show that
Gsγ(s) ⊆ Gt+1

α . In case α = γ(t + 1), this follows from (a). Otherwise, α 6 δ, and
so α 6 γ(t), and Gt+1

α = Gtα. By the definition of δ, it must be that Ss �α 6= St �α.
Then by induction, Gsγ(s) ⊆ G

t
α.

Now suppose that t 6 κ is a limit ordinal, and suppose that the filtrations Gs
have been defined for all s < t, and satisfy the conditions described. We now
describe how to define Gt. Let

∆ =
{
β : ∃s < t

[
β 6 γ(s) &

(
Ss �β = St �β

)]}
.

If s < t witnesses that β ∈ ∆, then s witnesses that every ε < β is in ∆ as well, and
so ∆ is actually an ordinal (a set of ordinals closed downwards). We let γ(t) = ∆.

We argue that ∆ is in fact a limit ordinal. This relies on the approximation 〈Ss〉
being continuous. Suppose, for a contradiction, that δ = max ∆ = ∆ − 1 exists.
Let s < t witness that δ ∈ ∆. Then Sr � δ is constant for r ∈ [s, t]. By definition
of ∆ we have δ 6 γ(s). Since (c) holds by induction, for all r ∈ [s, t) we have
δ 6 γ(r), that is, every r > s also witnesses that δ ∈ ∆. Since the approximation
is continuous, for sufficiently late r, we have Sr(δ) = St(δ), that is, Sr � δ + 1 is
constant on a final segment of r < t. So we may assume that Ss �δ + 1 = St �δ + 1.
Now by our instructions for the successor case, we have γ(s+ 1) > δ + 1, so stage
s+ 1 witnesses that δ + 1 ∈ ∆, a contradiction.

Now for all β < γ(t) = ∆, we define Gtβ = Gsβ for any s < t witnessing that
β ∈ ∆; again, as Sr � β = St � β for all r ∈ [s, t), by (c) Grβ is constant for all
such r, so Gtβ is well-defined, and 〈Gtβ〉β<γ(t) is increasing and continuous; we let
Gtγ(t) =

⋃
β<γ(t)G

t
β , and this defines Gt, which is indeed a filtration. We verify

that the conditions above hold for t.
(c) is by construction. For (d), let s < t and α 6 γ(t), and suppose that

Ss �α 6= St �α. As above, we now assume that α < γ(t), as the case α = γ(t) will
follow from (a), which we will soon verify. Since α ∈ ∆, find some r < t such that
Sr � α = St � α and α 6 γ(r). Then s < r < t. By induction, Gsγ(s) ⊆ Grα, and
Grα = Gtα.

For (a), Let s < t. Since γ(t) /∈ ∆, and γ(t) is a limit, there is some β < γ(t)
such that Ss �β 6= St �β. Again let r ∈ (s, t) such that Sr �β = St �β and β 6 γ(r).
By induction,

Gsγ(s) ⊆ G
r
β = Gtβ ⊆ Gtγ(t)

as required.
Finally, we verify (b). Let β < γ(t). Suppose that β ∈ St. Take s < t witnessing

that β + 1 ∈ ∆. Then β ∈ Ss and by induction, Gsβ - Gsβ+1; and Gtβ = Gsβ and
Gtβ+1 = Gsβ+1. Suppose that β /∈ St, and let δ ∈ (β, γ(t)). Let s < t witness that
δ ∈ ∆. Then δ /∈ Ss, and so Gsβ | Gsδ; so Gtβ | Gtδ, showing that β ∈ Div(〈Gtα〉α<γ(t)).
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Now by assumption, the set St in nonstationary in γ(t), and so Gtγ(t) is free, and
Div(Gt) = γ(t) \ St.

This completes the construction. There is one thing left to show: that γ(κ) =
κ. This fundamentally follows from the regularity of κ, which implies that the
approximation 〈St〉 of S = Sκ is tame: for all β < κ there is some t < κ such
that St � β = Sκ � β. [This is proved by induction on β; if this is known for all
α < β, then the function taking such α to the least t for which St �α = Sκ �α must
be bounded below κ.] So now we show by induction on β < κ that β 6 γ(s) for
some s for which Ss �β = Sκ �β (which by (c) for s and κ implies that β 6 γ(κ)).
If this is known for β, then by taking a sufficiently late s, we may assume that
Ss �β + 1 = Sκ �β + 1 as well; then by construction, β+1 6 γ(s+1). Now suppose
that β is a limit ordinal. For all α < β, let sα be least s such that α 6 γ(s) and
Ss �α = Sκ �α. Then the sequence 〈sα〉α<β is nondecreasing; let s∗ = supα<β sα.
Then Ss∗ �β = Sκ �β, and by (c), for all α < β, α 6 γ(s∗), so β 6 γ(s∗).

The restriction of the construction to t < κ is κ-computable. In particular, the
sequence 〈Gsγ(s)〉 is κ-computable, and so its union, which is Gκκ, is κ-computable;
by (b) at t = κ, it is free. The filtration 〈Gκα〉α<κ is ∆0

2(Lκ) and by (b), Div(Gκ) =

κ \ Sκ as required. This completes the proof of Proposition 2.8.1

4. Constructing fat thin sets

In this section we prove Proposition 2.9. As in the previous section, we first
consider the construction under some simplifying assumptions. First, we review
the basic tools of fine-structure theory that were used in [7] and will use again
below. They are taken from Jensen’s original paper [8].

Definition 4.1. The class E consists of all the singular ordinals α such that for
some β > α:

• Lβ |= ZF−;
• α is the greatest cardinal of Lβ ;
• there exists p ∈ Lβ such that Lβ is the least fully elementary substructure
M ≺ Lβ with p ∈M and M ∩ α transitive.

Each α ∈ E has countable cofinality; in fact, if α ∈ E, witnessed by β, then
there is a cofinal ω-sequence in α definable over Lβ+1. Thus, once we see that an
ordinal α is singular, we can effectively tell if α ∈ E or not. Thus, for any regular κ,
E ∩ κ is κ-c.e.; if κ is a successor cardinal, then E ∩ κ is κ-computable.

The following lemma is used to produce elements of E:

Lemma 4.2. Let κ be regular and uncountable; let q ∈ Lκ+ . Let M be the least
elementary substructure of Lκ+ such that q ∈ M and M ∩ κ is transitive. Let
π : M → Lβ be the Mostowski collapse; let α = π(κ) = M ∩ κ. Then α ∈ E,
witnessed by β.

The deep fact about E that is used throughout is [8, Thm.5.1]:

1Note that there is no reason to believe that Div(〈Gs
γ(s)

〉) = κ \ S; they agree on a club, but

that club may fail to be κ-computable, it is merely ∆0
2(Lκ).
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Theorem 4.3 (Jensen). The class E does not reflect at any singular ordinal. That
is, if α is singular then E ∩ α is nonstationary in α.

On the other hand, E is stationary in every regular cardinal.

Toward the full proof of Proposition 2.9, we give the proof when κ is asuccessor
cardinal. In that case, E∩κ is κ-computable, and so we can make the desired set S
κ-computable as well. To simplyfy even further, rather than meeting X-computable
clubs for some possibly quite complicated X, we consider a simpler collection of
sets, namely the first-order definable ones. We thus prove:

Proposition 4.4. Let κ be a successor cardinal. There is a κ-computable set S
which is nowhere stationary but intersects every club of κ which is first-order de-
finable over Lκ.

This implies that there is a κ-computable free group with no first-order definable
basis.

Proof. The set S is constructed by recursion. At stage δ < κ, we will have already
defined S � δ. If δ /∈ E then δ /∈ S. Suppose that δ ∈ E. Then we let δ ∈ S if
and only if there is some C ⊆ δ, closed and unbounded in δ, which is first-order
definable over Lδ, which is disjoint from S ∩ δ.

Because E is κ-computable, the construction is κ-computable, and so S is κ-
computable.

Let us show that S intersects every club of κ, first-order definable over Lκ.
Let C be such a club. Let M be the smallest elementary substructure of Lκ+

which contains the parameters used for the definition of C, and such that M ∩ κ is
transitive. Let π : M → Lβ be the Mostowski collapse, and let α = π(κ) = M ∩ κ.
By Lemma 4.2, α ∈ E. Now π(C) = C∩α is a club of α which is first-order definable
over Lα = π(Lκ). Also note that α ∈ C (as C is closed). If π(C) ∩ (S ∩ α) 6= ∅
then some γ < α is an element of S ∩C, in which case we are done. Otherwise, by
construction, we put α into S, so in this case α ∈ C ∩ S.

It remains to show that S is nowhere stationary. By construction, S ⊆ E, and
E does not reflect at any singular ordinal (Theorem 4.3), so it suffices to show that
S ∩ λ is nonstationary in λ, for every regular cardinal λ 6 κ.

By constructing an increasing, continuous sequence of elementary submodels of
Lκ+ , we obtain a closed set D ⊆ κ such that D ∩ λ is unbounded in λ for every
regular λ 6 κ, and such that for all α ∈ D there is a model Mα ≺ Lκ+ with
α = M ∩ κ. It suffices to show that D ∩ S = ∅. Let α ∈ D; let π : Mα → Lβ be
the Mostowski collapse. Let C ⊆ α be a club of α, first-order definable over Lα.
Then C ∈ Lβ , and π−1(C) is a club of κ, first-order definable over Lκ. We have
just proved that S ∩ π−1(C) 6= ∅. Note that S ∈ Mα (as it is definable over Lκ).
By elementarity of Mα, there is some γ < α in π−1(C)∩ S. Then γ ∈ C ∩ (S ∩ α).
Thus, S ∩ α meets all clubs of α which are first-order definable over Lα, and so
even if α ∈ E, the construction would instruct us to keep α out of S. �

Now for the full proof of Proposition 2.9, we need to overcome two obstacles:
• If κ is not a successor cardinal, we need to deal with the fact that E ∩ κ is

not κ-computable, but merely κ-c.e.
• We need to diagonalise against all X-computable clubs for some X which

is ∆1
1(Lκ), not just first-order definable ones.
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For the first difficulty, we fix a κ-computable enumeration 〈Et〉t<κ of E, and repeat
the construction above at each stage t 6 κ, giving us a set St for each such t; we will
show that this is an approximation as required. For the second, we use a technique
of approximating (or reflecting) ∆1

1 sets that was used by Johnston [9, Thm.4.43]
and S. Friedman and his co-authors [4, Lem.2.5].

Fix a ∆1
1(Lκ) set X. Thus, there are two first-order formulas ϕ and ψ, with

parameters in Lκ, such that (∃Y )ψ(−, Y ) and (∃Y )ϕ(−, Y ) define X and its com-
plement respectively, where the variable Y ranges over subsets of κ, and for each
Y ⊆ κ, the formula ϕ(−, Y ) is evaluated in the structure (Lκ;∈, Y ) (with Y inter-
preting a unary predicate).

Fix ordinals α < β such that Lβ |= ZF− and α is regular in Lβ and is the largest
cardinal of Lβ . Also assume that the parameters used for the formulas ϕ and ψ are
elements of Lα. We let

Aβα = {γ < α : (∃y ∈ Lβ) y ⊆ α & Lα |= ϕ(γ, y)}
and

Bβα = {γ < α : (∃y ∈ Lβ) y ⊆ α & Lα |= ψ(γ, y)} .
If α ∈ E the we write Aα and Bα for Aβα and Bβα for the unique β which witnesses
that α ∈ E. We say that α ∈ E is good if Bα = α \ Aα. In this case, Aα is our
guess for X at level α. The guess is correct on a club. This follows from:

Lemma 4.5. Suppose that M is an elementary substructure of Lκ+ (containing
the parameters for ϕ and ψ), and M ∩ κ ∈ κ. Let α = M ∩ κ, and let Lβ be the
Mostowski collapse of M . Then Bβα = α \Aβα, and Aβα = X ∩ α.

We now provide the proof of Proposition 2.9. Let κ be regular; fix X, ϕ and ψ
as above. Let 〈Et〉 be a κ-computable enumeration of E ∩κ: for all t 6 κ, Et is the
collection of α < t which are witnessed to be in E by some β < t. The facts about
this enumeration that we use are:

(1) If s 6 t 6 κ then Es ⊆ Et; if t 6 κ is limit then Et =
⋃
s<tEs; Eκ = E ∩κ.

(2) For any cardinal λ < κ, for all t > λ, Et ∩ λ = E ∩ λ.
Now for each t 6 κ we define a set St ⊆ Et by recursion. For α < t, if St �α has
already been defined, then we set α ∈ St if and only if α ∈ Et, α is good, and
there is a club of α, disjoint from St ∩ α, which is ∆0

1 definable in the structure
(Lα;∈, Aα).

We first observe that Sκ intersects every X-computable club. Let C be an X-
computable club. As above, let M be a minimal elementary submodel of Lκ+

containing both the parameters for the definitions of X and its complement, and
for the reduction of C to X, such thatM∩κ ∈ κ; let α = M∩κ. Let π : M → Lβ be
the Mostowski collapse. By Lemma 4.2, α ∈ E, witnessed by β. The reduction of C
to X, and the fact that Aα = X ∩α (Lemma 4.5) shows that C ∩α is ∆0

1-definable
in (Lα;∈, Aα). Thus either C ∩ Sκ ∩ α is nonempty, or the construction puts α
into Sκ, and so α ∈ Sκ ∩ C.

Next, we show that Sκ is nowhere stationary. Since Sκ ⊆ E, it again suffices to
consider rgular cardinals λ 6 κ, and we use the same club D as above: D ∩ λ is
a club of λ for all regular λ 6 κ, and for all α ∈ D there is some Mα ≺ Lκ+ with
α = Mα ∩ κ. We show that D ∩ Sκ = ∅. Let α ∈ D. To verify that α /∈ S, we may
assume that α ∈ E and is good. Let β witness that α ∈ E, and let π : Mα → Lγ
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be the Mostowski collapse. Since Lγ thinks that α is regular (even with respect
to sequences definable over Lγ), we have γ 6 β. By Lemma 4.5, Bγα = α \ Aγα
(and Aγα = X ∩ α). On the other hand, because both Aα and Bα are defined by
existential formulas, they are upwards absolute, which implies that Aγα ⊆ Aβα = Aα
and Bγα ⊆ Bβα = Bα. Since α is good, we must have Aα = Aγα = X ∩ α.

Let C be a club of α which is ∆0
1-definable over (Lα;∈, Aα). Using the same

definition over Lκ with X replacing Aα results with a club C̃ of κ which is X-
computable and such that π(C̃) = C̃ ∩ α = C. Now Sκ ∈Mα and π(Sκ) = Sκ ∩ α;
as Sκ∩C̃ 6= ∅ andMα ≺ Lκ+ , as above we have C∩(Sκ∩α) 6= ∅. So our instructions
ensure that α /∈ S.

It follows that for all t < κ, St is nowhere statonary as well. Since St ⊆ Et ⊆ E,
it again suffices to check that St ∩ λ is nonstationary in λ, when λ 6 κ is regular.
No if λ > t then St ⊆ t is bounded in λ, and so nonstationary. If λ 6 t then as
Et ∩λ = E ∩λ, we can see that St ∩λ = Sκ ∩λ (by induction on α < λ we see that
St ∩α = Sκ ∩α). And we have already observed that Sκ ∩ λ is nonstationary in λ.

It remains to show that 〈St〉t6κ is lexicographically nondecreasing and is contin-
uous. Let s < t 6 κ. Let δ < κ be such that Ss � δ = St � δ. If δ ∈ Ss then δ ∈ Es
and so δ ∈ Et; the same calculation that put δ into Ss holds for St, so δ ∈ St.
Hence Ss 6 St lexicographically.

Let t 6 κ be a limit ordinal. Let δ < κ and s < t such that Ss � δ = St � δ.
Suppose that δ ∈ St. So δ ∈ Et. Since Et =

⋃
r<tEr, for sufficiently late r, we have

δ ∈ Er; if δ ∈ Er and Sr � δ = St � δ then the same calculation that put δ into St
also puts δ into Sr. This shows that St = supr<t Sr, and completes the proof of
Proposition 2.9, and so of Theorem 1.1.

5. Further work

Theorem 1.1 is optimal: R. Johnston has noticed (see [9]) that every κ-computable
free group has a basis which is ∆1

1(Lκ); namely, the <L-least basis is ∆1
1(Lκ).

However, one can study the general question of the “degree spectra” of bases
of κ-computable free groups: what collections of κ-degrees can be realised as the
collection of degrees computing bases for some κ-computable free group? In [7],
the authors show that one cannot code much into bases; depending on κ, the most
that can be coded into all bases of some group is either ∅′ or ∅′′. One can ask,
though, for example, in view of Proposition 4.4, whether there is a κ-computable
free group G such that a κ-degree computes a basis for G if and only if it is not
first-order definable over Lκ (not computable from ∅(n) for any n), and similarly,
whether the non-arithmetic degrees (those not below ∅(α) for any α < κ) can be
similarly realised.
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