
Languages of Words of Low Automatic Complexity1

Are Hard to Compute2

Joey Chen #3

Department of Mathematics, National University of Singapore, Singapore4

Bjørn Kjos-Hanssen #Ñ5

Department of Mathematics, University of Hawai‘i at Mānoa, United States of America6

Ivan Koswara #7

School of Computing, National University of Singapore, Singapore8

Linus Richter1 #Ñ9

Department of Mathematics, National University of Singapore, Singapore10

Frank Stephan # Ñ11

Department of Mathematics, National University of Singapore, Singapore12

School of Computing, National University of Singapore, Singapore13

Abstract14

The automatic complexity of a finite word (string) is an analogue for finite automata of Sipser’s15

distinguishing complexity (1983) and was introduced by Shallit and Wang (2001). For a finite16

alphabet Σ of at least two elements, we consider the non-deterministic automatic complexity given17

by exactly—yet not necessarily uniquely—accepting automata: a word x ∈ Σ∗ has exact non-18

deterministic automatic complexity k ∈ N if there exists a non-deterministic automaton of k states19

which accepts x while rejecting every other word of the same length as x, and no automaton of fewer20

states has this property. Importantly, and in contrast to the classical notion, the witnessing automaton21

may have multiple paths of computation accepting x. We denote this measure of complexity by ANe,22

and study a class of languages of low ANe-complexity defined as Lq = {x ∈ Σ∗ : ANe(x) < q|x| },23

which is parameterised by rationals q ∈ (0, 1/2) (generalising a class of sets first studied by Kjos-24

Hanssen). We show that for every q ∈ (0, 1/2), this class is neither context-free nor recognisable by25

certain Boolean circuits. In the process, we answer an open question of Kjos-Hanssen quantifying26

the complexity of L1/3 in terms of Boolean circuits, and also prove the Shannon effect for ANe.27

2012 ACM Subject Classification Theory of computation Grammars and context-free languages28

Keywords and phrases Automatic complexity, automata theory, formal languages, Boolean circuits,29

Shannon effect30

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2331

Funding Bjørn Kjos-Hanssen: This work was partially supported by a grant from the Simons32

Foundation (#704836 to Bjørn Kjos-Hanssen).33

Linus Richter : This work was fully supported by Singapore Ministry of Education grant MOE-34

000538-01.35

Frank Stephan: This work was partially supported by Singapore Ministry of Education grant36

MOE-000538-01.37

Acknowledgements Parts of this work have appeared in the first author’s Bachelor’s thesis submitted38

to the National University of Singapore.39

1 Corresponding author

© Joey Chen, Bjørn Kjos-Hanssen, Ivan Koswara, Linus Richter and Frank Stephan;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e0389025@u.nus.edu
mailto:bjoernkh@hawaii.edu
https://math.hawaii.edu/wordpress/bjoern/
https://orcid.org/0000-0002-6199-1755
mailto:ivanak@comp.nus.edu.sg
https://orcid.org/0000-0002-9311-6840
mailto:richter@nus.edu.sg.org
https://blog.nus.edu.sg/linusrichter/
https://orcid.org/0000-0003-0267-1839
mailto:fstephan@comp.nus.edu.sg
https://www.comp.nus.edu.sg/~fstephan/
https://orcid.org/0000-0001-9152-1706
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Languages of Words of Low Automatic Complexity Are Hard to Compute

1 Introduction40

Automatic complexity is a notion of complexity of finite words (strings) determined by41

witnessing automata, first introduced by Shallit and Wang in [32] as a Turing computable42

alternative to Kolmogorov complexity. It is an analogue for finite automata of Sipser’s43

distinguishing complexity [34]. Classically, the automatic complexity of a word x over a44

finite alphabet Σ refers to the cardinality—counted in number of states—of the smallest45

deterministic finite automaton which accepts x and rejects every other word of the same46

length as x [32]. The notion as well as variations of it have proven interesting for multiple47

reasons. For instance, since automatic complexity is Turing computable, it can be used in the48

study of computational complexity: the computational complexity of sets of binary words of49

low automatic complexity has helped prove missing relationships in the Complexity Zoo [1]50

(see [19, Theorem 39] for an example). Further, the detailed investigation of words in terms51

of their automatic complexity [16, 15] has shed light on computable notions of randomness,52

which are unavailable from the viewpoint of Kolmogorov complexity [20, 37, 27].53

In this paper, we study a weakening of a variation of automatic complexity due to54

Hyde [11], and show that it generates classes of words too complicated to be captured by55

pushdown automata, nor by certain classes of constant-depth Boolean circuits—both of56

which are notably computationally more powerful than finite automata. This provides further57

evidence towards the conjecture that automatic complexity is hard to compute (see e.g. [14]).58

1.1 Technical Background59

Fix a finite alphabet Σ of at least two elements. In usual Kleene notation, we denote by Σ∗
60

the set of all finite words of elements from Σ. We denote the empty string by ε, and the set of61

non-empty words by Σ+ = Σ∗ \ {ε}. By an automaton we always mean a non-deterministic62

finite automaton, unless otherwise stated. We do not allow ε-transitions.63

▶ Definition 1. Let x ∈ Σ∗. An automaton M exactly accepts x if M accepts x, and64

whenever both y ̸= x and |y| = |x| then M rejects y.65

The pumping lemma shows that this definition is maximally restrictive on the number of66

words accepted by the witnessing automaton; trying to strengthen the definition by asking67

for outright uniqueness of the accepted word only leads to trivialities.68

▶ Definition 2. The automatic complexity of x ∈ Σ∗ is given by69

AD(x) = min{ k ∈ N : there exists a DFA of k states which exactly accepts x }.70

For a reference on contemporary automatic complexity, see e.g. the recent [18]. The sub-71

script D stands for “deterministic”, indicating that AD(x) is determined by the smallest DFA.72

By definition, it is clear that AD is well-defined, and even computable (for every n ∈ N, there73

are only finitely many DFAs, and each can be simulated in finite time). However—similar74

to the unnatural properties of plain compared to prefix-free Kolmogorov complexity—the75

measure AD has the following properties, which may render it undesirable as a natural76

measure of complexity of words. These were first described in [12]:77

1. AD is not invariant under natural transformations on strings, such as reversals. For78

instance, Hyde and Kjos-Hanssen have verified computationally that AD(011100) = 4 <79

5 = AD(001110).80

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:3

2. The DFA witnessingAD(x) often appears unnatural, in the sense that determinism requires81

AD(x) to be total: in many cases, an automaton non-“deterministically” witnessing AD(x)82

needs to be augmented by an extra state to which every non-accepting path leads.83

To overcome these obstacles, Hyde introduced automatic complexity witnessed by the smallest84

non-deterministic finite automaton (NFA) [11].85

▶ Definition 3. Let x ∈ Σ∗. An automaton M uniquely accepts x if M exactly accepts x86

and there is only one path in M which accepts x.87

Clearly, every DFA which exactly accepts x also uniquely accepts x. For NFAs, however,88

this is not the case. An NFA uniquely accepts x if and only if the NFA exactly accepts x and89

the NFA is unambiguous on Σ|x|. Though Hyde [11] required the NFA to be unambiguous90

on Σ|x|, she noted that the complexity based on NFAs is much more flexible and many words91

have a smaller complexity in her version than if only DFAs are considered. So she introduced92

nondeterministic automatic complexity formally as follows.93

▶ Definition 4. Let x ∈ Σ∗. The unique non-deterministic automatic complexity94

of x is given by95

AN (x) = min{ k ∈ N : there exists an NFA of k states which uniquely accepts x }.96

▶ Remark 5. We note that this notion is usually called “non-deterministic automatic complex-97

ity”. As we study an ostensibly weaker notion below, we emphasise the additional strength98

of the notion defined in Definition 4 by adding the attribute “unique”.99

While it is well-known that NFAs and DFAs recognise exactly the same class of languages—100

the regular languages (see e.g. [31, 13] for a comprehensive background on automata theory)—101

the respective notions of automatic complexity differ. The following properties of AN have102

been derived by Hyde and Kjos-Hanssen alongside co-authors, and others. Let MN (x) denote103

both the minimal automaton witnessing AN (x) and the directed graph representing it.104

▶ Lemma 6. Let x ∈ Σ∗.105

1. By exhibiting suitable NFAs, one sees that AN (x) ≤ (|x|/2) + 1 [11].106

2. MN (x) is planar [2].107

Building upon Hyde’s work from [11], in the present paper we study more closely the108

notion of automatic complexity induced by a weaker class of machines: the class of exactly109

but not necessarily uniquely accepting automata.110

▶ Definition 7. Let x ∈ Σ∗. The non-deterministic automatic complexity of x is111

ANe(x) = min{ k ∈ N : there exists an NFA of k states which exactly accepts x }.112

Since every NFA which uniquely accepts x also exactly accepts x, we have ANe(x) ≤113

AN (x). Whether equality holds is still open (Question 49). In [19], Kjos-Hanssen investigated114

the complexity of certain languages induced by AN in terms of more complicated theories of115

computation, e.g. pushdown automata. In particular, he showed:116

▶ Theorem 8.117

1. {x ∈ {0, 1, 2}∗ : AN (x) ≤ |x|/2 } is not context-free.118

2. {x ∈ {0, 1}∗ : AN (x) ≤ |x|/3 } cannot be recognised by constant-depth circuits with119

semi-unbounded fan-in, using Boolean ∧- and ∨-gates.120

Results of this type motivate this paper: we investigate the impact of exactness on the121

behaviour of automatic complexity, which we describe via theorems akin to Theorem 8.122

CVIT 2016

23:4 Languages of Words of Low Automatic Complexity Are Hard to Compute

1.2 Our Theorems and the Structure of This Paper123

We investigate the complexity of ANe as a function in terms of the complexity of the language124

of ANe-complicated words. Explicitly, we investigate the following class of languages first125

defined2 by Kjos-Hanssen [19], and prove results on their complexities.126

▶ Definition 9. For q ∈ (0, 1/2), define Lq = {x ∈ Σ∗ : ANe(x) < q|x| }.127

In Section 2, we isolate complexity results on the Lq-sets which follow from a fine-grained128

investigation of its elements. For instance, in Proposition 16 we isolate an upper bound of129

the Kolmogorov complexity of words in Lq. This gives us a small-to-large result—a theorem130

about elements which provides information about sets—in the form of Corollary 18, which131

shows that the cardinality of Lq ∩ Σn is in o(kn) where k is the cardinality of the alphabet.132

This observation also yields a proof of the Shannon effect for ANe:133

▶ Theorem 20. Let ANe (Σn) = maxy∈Σn ANe(y). For almost every x ∈ Σ∗ we have134

ANe(x) ≥ ANe

(
Σ|x|

)
− o

(
ANe

(
Σ|x|

))
.135

In Section 3, we show that pushdown automata are not powerful enough to character-136

ise ANe-complicated words, which the following theorems show.137

▶ Theorem 32. For every q ∈ (0, 1/2), the language Lq is not context-free.138

▶ Theorem 33. For every q ∈ (0, 1/2), the language Σ∗ \ Lq is not context-free.139

In Section 4, we consider the complexity of Lq in terms of Boolean circuits. To do so,140

we use two classical types of Boolean circuits—SAC0, defined in Section 4.1, and
⊕

SAC0,141

defined in Section 4.2—and apply a counting argument to prove:142

▶ Theorem 38. Let q ∈ (0, 1/2) and |Σ| = 2. Then Lq ̸∈ SAC0 and Σ∗ \ Lq ̸∈ SAC0.143

▶ Theorem 45. Let q ∈ (0, 1/2) and |Σ| = p for some prime p. Then Lq ̸∈
⊕

SAC0
144

and Σ∗ \ Lq ̸∈
⊕

SAC0.145

As a special case, we show that L1/3 is not
⊕

SAC0-recognisable, answering a question146

of Kjos-Hanssen [19, p. 351]. By giving a minor redefinition of
⊕

SAC0-recognisability for147

alphabets of non-prime cardinality, we also prove a partial generalisation of these theorems:148

▶ Theorem 47. Let q ∈ (0, 1/2) and |Σ| = r for some non-prime r. Let p be the smallest149

prime greater than r. Let
⊕

SAC0
r denote the class

⊕
SAC0 for r-cardinality alphabets150

inside the field of p elements. Then Lq ̸∈
⊕

SAC0
r and Σ∗ \ Lq ̸∈

⊕
SAC0

r.151

In Section 5, we conclude this paper by giving a few open questions.152

2 Combinatorial Properties of Lq153

In this section, we derive combinatorial properties of Lq which are needed in the sequel,154

particularly to prove Theorem 32. Fix q ∈ (0, 1/2). Firstly, we show that Lq satisfies a strong155

closure property: any word x ∈ Σ∗ can be extended to some word y ∈ Σ∗ for which y ∈ Lq.156

2 In [19, Def. 17], Kjos-Hanssen has considered the complementary decision problem, given by q|x| <
ANe(x). We note that our class {Lq : q ∈ (0, 1/2) } is more general.

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:5

▶ Proposition 10. Suppose x ∈ Σ∗. If m > |x|/q then xm ∈ Lq.157

Proof. Let n = |x| and suppose x = x0 · · ·xn−1 ∈ Σ∗. Now build an NFA as follows:158

there are n states {s0, . . . , sn−1}, with s0 being both the start and unique accepting state.159

Transitions are given by si
xi−→ si+1 for i < n− 1 and sn−1

xn−1−−−→ s0. It is readily seen that160

this automaton witnesses ANe(xm) ≤ |x| < qm < qm|x| = q|xm|, as needed. ◀161

While the previous proposition employs repetition of words to push the non-deterministic162

automatic complexity down, in the following lemma we show that spacing out bits of inform-163

ation achieves the same effect. W.l.o.g., assume 0 ∈ Σ. For notation, if x = x0 · · ·xn−1 ∈ Σ∗
164

then define the (Hamming) weight of x by weight(x) = |{ k < n : xk ̸= 0 }|.165

▶ Lemma 11 (Gap Lemma). For every c ∈ N there exists n ∈ N such that if x ∈ Σn and166

weight(x) ≤ c then x ∈ Lq.167

Note that, in the statement above, n depends on q, which we fixed at the beginning of168

this section. Before we give the proof, we need the following number-theoretical lemma,169

called Bertrand’s postulate (for a proof see e.g. [28]). Let P denote the set of prime numbers.170

▶ Lemma 12 (Bertrand’s postulate). If h > 1 then P ∩ (h, 2h) is non-empty.171

Proof of Lemma 11. Fix c ∈ N. For each n ∈ N \ {0, 1}, we define a finite sequence of172

primes by (p1(n), . . . , pc(n)) as follows: put p1(n) = min (P ∩ (c
√
n, 2 c

√
n)) and173

pi+1(n) = min(P ∩ (pi, 2pi)) for i = 1, 2, . . . , c− 1.174

Since n > 1, Bertrand’s Postulate shows that this is well-defined. Now, let175

Qi(n) =
(

1
pi(n)

) c∏
j=1

pj(n)176

Bertrand’s postulate alongside a short calculation imply pc(n) < 2c−1p1(n) < 2c c
√
n, and so177

Qi(n) ≤ (pc(n))c−1 ≤ 2c(c−1)n
c−1

c178

which proves that Qi(n) ∈ O(n c−1
c). This also shows that, in the limit, Qi(n) < n. Sim-179

ilarly, Qi(n)pi(n) > (p1(n))c > (c
√
n)c = n and hence, again in the limit, Qi(n) < n <180

Qi(n)pi(n). For x ∈ Σn with weight(x) ≤ c, write x = w00ℓ1w1 · · · 0ℓkwk for some k ≤ c. By181

choosing n < ω sufficiently large, we may assume the following (write Qi = Qi(n)):182

|wi| ≤ cQ1 for i = 0, 1, . . . , k.183

ℓi ≥ Q1 for i = 1, . . . , k.184

Now, write ℓi = aiQi + ri where 0 ≤ ri < Qi. Since Qipi > n we must have ai < pi;185

otherwise |ℓi| > n = |x|, a contradiction. Hence, consider the automaton M given below.186

s0start s1 s2 s3 s4 s5 sf
w0 0r1

0Q1

w2 0r2

0Q2

w3 · · ·

0Qk

wk

Figure 1 The automaton witnessing the “gap lemma”.

We show that M is as required. First, by definition, M accepts x. To show exactness,187

suppose y ∈ Σn and that M accepts y. If x ≠ y, assume w.l.o.g. that M(y) goes through188

CVIT 2016

23:6 Languages of Words of Low Automatic Complexity Are Hard to Compute

the 0Q1 -loop fewer than ai-many times. Since |y| = n, M(y) must go through the remaining189

loops more often to make up for the Q1-deficit. However, the equation Q1 = d2Q2+. . .+dkQk190

has no integer solution, since p1 divides the right-hand side yet not Q1. Thus M cannot191

accept y, as needed. Finally, recall that ri, |wi| ≤ cQ1 ∈ O(n c−1
c). ◀192

Our next result studies the small-scale structure of words in Lq. We say w is a subword193

of x if there exist u, v ∈ Σ∗ for which x = uwv; we write w ⪯ x. If u ∈ Σ+ or v ∈ Σ+ then w194

is a proper subword of x; we write w ≺ x. Call a non-empty word w a square if there195

exists v ≺ w for which w = vv; we write w = v2.196

▶ Proposition 13. Let n ≥ 4 and x ∈ Lq ∩ Σn. There exists a proper subword w ≺ x of197

length |w| ≥
(1−2q

2
)√

n for which there are u, v ∈ Σ+ with |u| = |v| ≤ |w| and uw = wv ≺ x.198

Further, uwv ≺ x.199

Note that if |u| = |v| = |w| then the conclusion of Proposition 13 yields a square. To200

prove the general case of Proposition 13, we again need a classical auxiliary result, in this201

case due to Lyndon and Schützenberger [26].202

▶ Theorem 14 (The First Lyndon-Schützenberger-Theorem). Suppose x, y ∈ Σ∗. Then203

xy = yx if and only if there exists z ∈ Σ∗ and k, ℓ ∈ N for which x = zk and y = zℓ.204

Note that the First Lyndon-Schützenberger-Theorem characterises3 bordered words4—205

those which have a non-trivial decomposition of the form uw = wv—as those generated by206

powers of a common word z. This will be important in the proof of Proposition 13. We also207

require the following combinatorial lemma.208

▶ Lemma 15. Suppose x ∈ Σn for some n ≥ 4. Assume x ∈ Lq, and let MNe(x) be the209

witnessing automaton with accepting run (q0, . . . , qn). Then210

|{ k ∈ N : (∃ i, j)(i < j < k ∧ qi = qj = qk) }| ≥ (1 − 2q)n.211

Proof. Consider the list of states (q0, . . . , qn). Since q < 1/2, we have 2qn < n. In particular,212

n = 2qn+ (1 − 2q)n. Hence, by the pigeonhole principle, there exist at least (1 − 2q)n indices213

at which some state is visited a third time. ◀214

We now prove Proposition 13. Call triples (i, j, k) as provided by Lemma 15 loop triples215

(for x). Before we give the proof of Proposition 13, we introduce the following notation:216

write x[i,j] = xi · · ·xj . For instance, if n ≥ 4, then x0x1 · · ·xn−1 = x[0,n−1] = x[0,2]x[3,n−1].217

Proof of Proposition 13. Let x ∈ Σn be as assumed, and suppose (q0, . . . , qn) is the run218

of MNe which accepts x. Observe that if (i, j, k) is a loop triple for x (by Lemma 15 there219

are at least (1 − 2q)n many), then the witnessing NFA MNe(x) has completed at least two220

loops by the time it has read the word x[0,k−1]. There are two cases.221

1. There exists a loop triple (i, j, k) for which max(|x[i,j−1]|, |x[j,k−1]|) > (1 − 2q)
√
n.222

Assume w.l.o.g. that |x[j,k−1]| ≥ |x[i,j−1]| and write x = x[0,i−1]x[i,j−1]x[j,k−1]x[k,n−1].223

Since (i, j, k) is a loop triple, qi = qj = qk, and thus MNe(x) also accepts the word224

x[0,i−1]x[j,k−1]x[i,j−1]x[k,n−1]. Since MNe(x) exactly accepts x, we have x[j,k−1]x[i,j−1] =225

x[i,j−1]x[j,k−1], and so Theorem 14 implies x[i,j−1] = zk and x[j,k−1] = zℓ for some z ∈ Σ+
226

and k, ℓ ∈ N. Thus x[i,j−1]x[j,k−1] = zzk+ℓ−1 = zk+ℓ−1z. As |zk+ℓ−1| ≥ |x[j,k−1]| ≥227

(1 − 2q)n, we are done.228

3 A more general characterisation is given by the Second Lyndon-Schützenberger-Theorem 17.
4 For more on bordered words, see e.g. [29].

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:7

2. For all loop triples (i, j, k) we have max(|x[i,j−1]|, |x[j,k−1]|) ≤ (1 − 2q)
√
n.229

By Lemma 15, there exist (1 − 2q)n indices k for which there exist (i, j) such that (i, j, k)230

is a loop triple. Since every loop in a loop triple has length at most (1 − 2q)
√
n, the231

pigeonhole principle gives an ℓ ≤ (1 − 2q)
√
n such that there exist at least m ≥

√
n such232

indices k at which a loop of length ℓ was just completed (hence, we only focus on the233

second loops in each loop triple). Let this set of indices be given in ascending order,234

denoted by K = {k1, . . . , km}, with associated loops ρ1, . . . , ρm ≺ x, each of length ℓ.235

We show that ρ1 and ρm must be disjoint, i.e. share no states along their traversals236

in MNe(x). Let qk1 be the origin state of the loop ρ1. By definition, ρ1 is the second237

loop in the loop triple (i1, j1, k1). Suppose τ is the first loop at qk1 so that τρ1 is a loop238

triple at qk1 . Then, if we read b > (1 − 2q)
√
n letters along the loops at state qk1 , then239

we could concatenate those loops with τ to obtain a loop triple, one of whose lengths240

exceeds (1−2q)
√
n, which contradicts the assumption of this case. Therefore, at state qk1 ,241

we can only read at most (1 − 2q)
√
n letters of the subwords contained in ρ1, . . . , ρm,242

before moving on to a different state, never to return. However, by construction, for243

every i ≤ m we know that xki
appears in ρi, and thus we must read at least m ≥

√
n244

letters throughout all loops ρ1, . . . , ρm. Since q < 1/2, we have (1 − 2q)
√
n <

√
n ≤ m;245

hence, the first and last loops ρ1 and ρm must be disjoint. Thus, x = u ρ1 y ρm u′ where246

u, y, u′ ≺ x and |ρ1| = |ρm| = ℓ. By exact acceptance of MNe(x), we have247

x = u (ρ1)2 y u′
248

since |ρ1| = |ρm|. Therefore, ρ1y = yρm, and thus, with y′ = ρ1y, we have y′ρm = ρ1y
′.249

To show that y′ has the desired length, note that yρm must contain the set {xk2 , . . . , xkm};250

the loop ρ1, since it is the first loop in K, can only contain xk1 . Since n ≥ 4, we have251

|y′| = |yρm| ≥ |K| − 1 = m− 1 ≥
√
n− 2 ≥

√
n

2 . ◀252

We now apply Proposition 13 to go even finer: instead of studying the complexity of Lq,253

we classify the complexity of words in Lq, using plain Kolmogorov complexity. Fix an254

alphabet Σ of cardinality k, and let Ck denote plain Kolmogorov complexity on words in Σ255

(for details on Kolmogorov complexity, see e.g. [4]).256

▶ Proposition 16. If x ∈ Σn ∩ Lq, then257

Ck(x) ≤ n− (1 − 2q)
2

√
n+ 5 logk(n) +O(1).258

Its proof—which we include in the appendix—requires an extension of Theorem 14, which259

gives a sufficient and necessary criterion for the decomposition of words with same prefix and260

suffix. As it will be useful to us in the sequel outside of the proof of Proposition 16, we state261

it right here in the version of [31]. Let [·] denote the integer part function; e.g.
[3

2
]

= 1.262

▶ Theorem 17 (The Second Lyndon-Schützenberger-Theorem). Let x, y, z ∈ Σ∗. Then xy = yz263

iff there exist e ∈ N \ {0}, u ∈ Σ+ and v ∈ Σ∗ such that x = uv, z = vu, and y = xeu = uze.264

With |Σ| = k as before, note that the function which maps x ∈ Σ∗ to its Ck-witness is an265

injection. Hence, Proposition 16 immediately yields the following bound on |Lq|.266

▶ Corollary 18. If |Σ| = k then the set Lq ∩ Σn has cardinality in o(kn).267

Let |Σ| = k. From Corollary 18, we now deduce the Shannon effect for ANe. Originally268

conjectured by Shannon [33] and proven (and named) by Lupanov for Boolean functions [24,269

25], the Shannon effect says that most strings are of almost maximal complexity. We give a270

definition due to Wegener [43].271

CVIT 2016

23:8 Languages of Words of Low Automatic Complexity Are Hard to Compute

▶ Definition 19. Let Γ be a complexity measure defined on Σ∗, and let P ⊂ Σ∗. We say272

almost all x have property P if273

lim
n→∞

|P ∩ Σn|
kn

= 1.274

Define Γ(P) = maxx∈P (Γ(x)). We say Γ satisfies the Shannon effect if for almost all x ∈ Σ∗
275

Γ(x) ≥ Γ
(

Σ|x|
)

− o
(

Γ
(

Σ|x|
))

.276

By exhibiting upper and lower bounds of complexity for all words, it is readily seen that277

(plain and prefix-free) Kolmogorov complexity satisfy the Shannon effect [20, 38, 39, 22, 21],278

as do AD [32] and An [11, 17]. The cardinality argument of Corollary 18 shows:279

▶ Theorem 20. ANe satisfies the Shannon effect.280

Proof. Fix q = 1/(2 + ϵ) for some small ϵ > 0. Since ANe(x) ≤ AN (x) ≤ (|x|/2) + 1281

(Lemma 6), identifying a suitable lower bound suffices. By Corollary 18, for o(kn)-many282

words x ∈ Σn we have x ∈ Lq. Hence, for almost all (as per Definition 19) x ∈ Σn,283

n

2 + ϵ
≤ ANe(x) ≤ n

2 + 1284

and so, for large enough n and x ∈ Σn, ANe(x) ∈ (n/2, n/2 + 1), as required. ◀285

3 Lq Is Not Context-Free286

Fix q ∈ (0, 1/2) and suppose w.l.o.g. that 0, 1 ∈ Σ. In this section, we demonstrate that Lq287

cannot be generated by a context-free grammar (CFG); hence Lq is not context-free. To this288

end, we first define the concept of a rich CFG. We then prove that if a CFG generates Lq,289

it must be rich. Finally, we show that any rich CFG generates words of arbitrarily high290

complexity, which contradicts the fact that the CFG generates Lq.291

▶ Definition 21. A CFG has no useless nonterminals if:292

1. each nonterminal is reachable from the starting symbol; and293

2. a terminal string can be derived from each nonterminal.294

▶ Definition 22. Let Γ be a CFG. A nonterminal A ∈ Γ is a rich nonterminal if for some295

words v, w, x, y ∈ Σ∗ we have vwxy ̸= ε and A ⇒∗ vAx | wAy as well as:296

1. if vw ̸= ε then vw ̸= wv; and297

2. if xy ̸= ε then xy ̸= yx.298

A rich CFG has a rich nonterminal but no useless nonterminals. A rich CFL is generated299

by a rich CFG.300

Our motivation for rich CFGs follows from Theorem 14, however, we note here that, in301

style, our richness characterisation is similar5 to classical results by Ginsburg [8, Theorem302

5.5.1], who characterised boundedness of CFLs via syntactical properties of grammars. Our303

syntactical notion of richness, similarly, characterises the complexity of generated languages,304

in our case Lq in particular. The equivalence in Theorem 14 implies that a rich non-terminal305

can construct words which do not collapse to repeating copies of a common factor z. This is306

needed in Section 3.2, where we construct high-complexity words.307

5 We thank the anonymous referee for this reference.

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:9

3.1 Only Rich CFGs Can Generate Lq308

We require the following normal form theorem due to Greibach [9] (see [10, p. 277] for a309

modern exposition).310

▶ Theorem 23 (Greibach Normal Form Theorem). Every CFG with no ε-productions can be311

expressed in Greibach Normal Form: all its production rules are of the form A → xA312

where x ∈ Σ and A is a finite word of nonterminals.313

Observe that x ∈ Σ, and hence a production of the form A → A is not permitted.314

Importantly, CFGs of Greibach Normal Form can generate a large class of context-free315

languages [10, Exercise 7.1.11].316

▶ Proposition 24. Every CFL omitting ε is generated by a CFG in Greibach Normal Form.317

Our main result in this subsection is the following.318

▶ Theorem 25. If Lq is generated by a CFG Γ, then Γ is rich.319

Proof. By our results in the previous section, Lq is non-empty; further, by definition, ε ̸∈ Lq.320

So, by Proposition 24, there exists a CFG Γ in Greibach Normal Form which generates Lq.321

We show that Γ must be rich by a counting argument on the number of nonterminals of Γ.322

Let k ∈ N denote the number of nonterminals in Γ. Define323

xi = 0i14k−i for i = 1, 2, . . . , 4k − 1.324

By Proposition 10, for every i there exists mi ∈ N for which xmi
i ∈ Lq. Similarly, for each i325

there exists m′
i ∈ N for which the derivation tree of xm′

i
i has a branch which contains some326

nonterminal A at least (4k)2 + 1 times. Let M ∈ N be sufficiently large to satisfy these327

requirements for all xi simultaneously. By the pigeonhole principle, there exist i, j, ℓ ≤ 4k− 1328

such that some nonterminal A appears at least (4k)2 + 1 times in some branch of the329

derivation tree of each of xM
i , xM

j and xM
ℓ .330

Consider such a sufficiently long branch of the derivation tree of xM
i , in which we choose331

to expand A at the end. Since Γ is in Greibach Normal Form, such a derivation is of the form332

S ⇒∗ y1
i y

2
i y

3
i . . . y

s
iAz

s
i . . . z

3
i z

2
i z

1
i333

from which xM
i can be derived in at least (4k)2 + 1 expansions of A. Observe that each334

yj
i ̸= ε, since Γ is in Greibach Normal Form. Consider the number of expansions A in terms335

of blocks B1, B2, . . . , Bn such that each block has cardinality 4k. By assumption, n ≥ 4k+ 1.336

Let Am be the derivation of A from the expansions in block Bm. There are two cases:337

1. For some m ≤ n, Am = yA with y ∈ Σ∗ and6 |y| ≥ 4k.338

2. For all m ≤ n, Am = ymAzm with ym, zm ∈ Σ+. Then, A4k = yAz with |y|, |z| ≥ 4k.339

Since these two cases apply to all xM
i , xM

j and xM
ℓ , two of them must share the same case340

above. W.l.o.g. assume both xM
i and xM

j fall into case 2 (the argument for case 1 is similar).341

Hence T ⇒∗ yAz (from the derivation of xM
i) and T ⇒∗ vAw (from the derivation of xM

j)342

where |y|, |z|, |v|, |w| ≥ 4k. By definition, y, z contain i-many zeroes, while v, w contain343

j-many zeroes among the first 4k-many letters. It is now seen from the First Lyndon-344

Schützenberger-Theorem that yv ̸= vy and zw ̸= wz; hence, A is a rich nonterminal. ◀345

6 This is a consequence of the observation immediately following Theorem 23.

CVIT 2016

23:10 Languages of Words of Low Automatic Complexity Are Hard to Compute

3.2 Every Rich CFG Generates High-Complexity Words346

In this section, we prove that every rich CFG generates words of arbitrarily high complexity347

relative to its length. In particular, there exists a word x for which ANe(x) > q|x| for348

every q ∈ (0, 1/2). This contradicts the fact that any rich CFG can generate Lq for any q.349

We also isolate the following technical proposition.350

▶ Proposition 26. Suppose u, v ∈ Σn with uv ̸= vu. Then the following set is infinite:351

I(u,v) = {x ∈ {u, v}∗ : if y ≺ x satisfies |y| > 2 log(|x|) then y occurs exactly once in x }352

Proving Proposition 26 takes a few technical lemmas on the behaviour of non-commuting353

strings in formal languages, which we prove below. Firstly, denote the set of subwords of a354

given word w ∈ Σ∗ by [w] = {x ∈ Σ∗ : x ≺ w }. For convenience, we now fix some n ∈ N and355

a pair u, v ∈ Σn for which uv ̸= vu.356

▶ Lemma 27. uv, vu ̸∈ [u3] ∪ [v3]357

Proof. We give the argument for uv ̸∈ [u3]; the other parts are similar. Assume that uv ∈ [u3];358

thus write u3 = xuvy for some x, y ∈ Σ∗. Note that |xy| = |u| = |v|. Since uv ≠ vu we359

cannot have x, y ∈ {u, v}, and thus |x|, |y| < |u| = |v|. But now, by periodicity of u3, we360

must have xy = u. Thus u3 = xyxyxy = xuvy. Therefore, uv = yxyx, from which it follows361

that u = xy = yx = v, contradicting the fact that uv ̸= vu. ◀362

To motivate the next lemma, we need to introduce string homomorphisms.363

▶ Definition 28. A function h : {0, 1, . . . , n− 1}∗ → Σ∗ is a string homomorphism if for364

all ni ∈ {0, 1, . . . , n− 1} we have h(n0 · · ·nk) = h(n0) · · ·h(nk).365

Observe that every such string homomorphism is uniquely defined by its action on the366

alphabet. Define a string homomorphism h : {0, 1, 2} → {u, v}∗ given by367

h(0) = uv h(1) = vu h(2) = u3v4
368

With this string homomorphism fixed, the following lemma is immediate from Lemma 27.369

▶ Lemma 29. u4, v4 ̸∈
⋃

{ [x] : x ∈ h({0, 1}∗) }370

To give a proof of Proposition 26, we first code words as follows. For every k ∈ N, let σk371

be the lexicographical concatenation of all positive integers which, coded in binary, have372

length k; each is then followed by a 2. For instance, σ2 = 002012102112. We consider the373

images of these words under h, and collect some immediate properties of the σk and the h(σk)374

below, whose proofs are readily deduced, hence omitted.375

▶ Lemma 30. Let k ∈ N.376

1. |σk| = 2k(k + 1)377

2. |h(σk)| = 2k|v|(2k + 7)378

3. 2 log(|h(σk)|) ≥ 2k + 14|v| for sufficiently large k.379

To prove Proposition 26, we show that for large enough k, every substring of h(σk) of380

length at least 2 log |h(σk)| must contain two copies of h(2); since the word between any two381

copies of h(2) is unique within h(σk), the proposition is proven.382

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:11

Proof of Proposition 26. Fix k ∈ N sufficiently large so as to satisfy Item 3, and consider383

the word h(σk). By construction and the choice of k, if y ≺ h(σk) and |y| ≥ 2 log(|h(σk)|)384

then y contains two copies of h(2). By definition, v4 ≺ h(2); on the other hand, Lemma 29385

shows that v4 cannot be a subword of any h(w) with w ∈ {0, 1}∗. Hence, v4 ≺ y must be a386

subword of some h(2) occurring in h(σk). We show that the copies of h(2) in y and in h(σk)387

overlap perfectly. Consider the word h(2)z = xh(2) contained in h(σk). This bordered word388

is in fact a proper square, which can seen by a case analysis on x. Write389

x = a|u| + ℓ for some a ∈ N, 0 ≤ ℓ < |u|390

u = αβ where |α| = ℓ391

v = γδ where |γ| = ℓ392

and note that this renaming implies |β| = |δ|, and that393

h(2)z = xh(2) = x1x2(αβ)3(γδ)4 = (αβ)3(γδ)4z.394

There are four cases describing x1; using Theorems 14 and 17, each will lead to a contradiction.395

1. a = 0396

Since |α| = ℓ, this case implies αβ = βα. Further, |βγ| = |αβ| = |βα|, and so α = γ. By397

comparing lengths, it is easily seen that β = δ, and so u = αβ = γδ = v, a contradiction.398

2. a = 1399

Since u = αβ, by comparing initial segments it is readily seen that in this case uv ≺ v4,400

contradicting Lemma 27.401

3. a = 2 or a = 3402

Since xh(2) = h(2)z, we must have that |x| = |z|. So if a = 2, 3, then again by comparing403

initial segments it is readily seen that uv ≺ v4, contradicting Lemma 27.404

4. a ≥ 4405

In this case, v4 ≺ z. Since z = h(w) for some w ∈ {0, 1}∗, Lemma 27 gives a contradiction.406

Hence, the copies of h(2) appearing in y are exactly those appearing in h(σk). But now,407

if y′ ≺ h(σk) is of length at least 2 log(|h(σk|), then it contains a subword of the form408

h(2)ρh(2) where ρ ∈ h({u, v}∗). Each such ρ appears only once in h(σk), by construction.409

Thus, for large enough k, the word h(σk) is as required, and thus the set I(u,v) is infinite. ◀410

▶ Theorem 31. If Γ is a rich CFG, then Γ generates a word x ∈ Σ∗ such that ANe(x) > q|x|411

for every q ∈ (0, 1/2).412

For notation, if σ ∈ {0, 1}∗, let σ denote the reverse of σ. Further, if x, y ∈ Σ∗
413

satisfy xz = zy and both xz, zy ≺ w such that xz and zy overlap at z, then call xzy its414

union, written as xz ∪ zy. We use Proposition 26.415

Proof. Let Γ be a rich CFG with rich nonterminal A and witnesses x, y, x′, y′ ∈ Σ∗ for416

which A ⇒∗ xAy | x′Ay′ and xx′ ̸= x′x and yy′ ≠ y′y. Define u1 = xx′, v1 = x′x417

and u2 = yy′, v2 = y′y. Now define string homomorphisms g, h by:418

g(0) = u1v1 g(1) = v1u1 g(2) = u3
1v

4
1419

h(0) = u2v2 h(1) = v2u2 h(2) = u3
2v

4
2420

Now fix any w1, w2, w3 ∈ Σ∗ for which421

S ⇒∗ a1Aa3 and A ⇒∗ a2. (∗)422

CVIT 2016

23:12 Languages of Words of Low Automatic Complexity Are Hard to Compute

By repeated application of the generation rules in (∗), it is readily seen that for any m, k ∈ N,423

the word ym,k of the following form is generated by Γ:424

ym,k = (w1 g(σk)) (xm w2 y
m) (h(σk) w3).425

We show that, for sufficiently large m, k, the word ym,k has large non-deterministic automatic426

complexity. Choose m, k large enough so that |ym,k| ≫ |w1w2w3| and let n = |ym,k|. Since427

we may choose k,m freely, we may also impose that428

2 log(n) ≤ m|x| ≤ 3 log(n) ∈ o(
√
n). (†)429

Now, let z ≺ ym,k whose length is in O(
√
n) be the first occurrence of a word in ym,k of the430

form zb = cz for words b, c ≺ ym,k. Below, we show that this is only possible if b = c = ε.431

By choosing m, k wisely, we may assume that |z| is even. Further, it will be convenient432

to distinguish the words which make up the left-hand and right-hand squares of z; hence433

write z = z1z2 = z′
1z

′
2 so that |z1| = |z2| and z1 = z′

1, z2 = z′
2, and z1z2b = cz′

1z
′
2.434

We show that z1 ≺ w1g(σk); the case that z′
2 ≺ h(σk)w3 is similar. Note that, otherwise,435

we may choose k large enough so that z1 intersects h(σk)w3, and in particular, we may436

enforce that this intersection s ∈ Σ∗ has length at least 2 log(n). By construction and the fact437

that z1z2b = cz′
1z

′
2, the word s must appear twice in h(σk), which contradicts Proposition 26.7438

Thus, z1 ≺ w1g(σk) and z′
2 ≺ h(σk)w3 imply that xmw2y

m is subword of the union z2b∪439

cz′
1. By a counting argument, it is seen that either xm ≺ z2 or ym ≺ z′

1. If xm ≺ z2—the other440

case is similar—then also xm ≺ z′
2 ≺ h(σk). But this is impossible, again by Proposition 26441

and since |z′
2| ≥ m|x| ≥ 2 log(n) by (†). Therefore, we have arrived at a contradiction: we442

can only have z1z2b = cz′
1z

′
2 if b = c = ε. But now, the contrapositive of Proposition 13 shows443

that ym,k ̸∈ Lq for every q ∈ (0, 1/2). Since ym,k is generated by Γ, the result is proven. ◀444

Theorem 31 and Theorem 25 combined imply our main result of this section:445

▶ Theorem 32. For every q ∈ (0, 1/2), the language Lq is not context-free.446

A language L is CFL-immune if it contains no infinite context-free language as a subset.447

We note here that Lq cannot be CFL-immune, since for every letter x ∈ Σ, the regular448

language {x}+ is contained in Lq (modulo finitely many words, depending on q), and each449

of its words has constant complexity. However, the following holds:450

▶ Theorem 33. For every q ∈ (0, 1/2), the language Σ∗ \ Lq is CFL-immune.451

For the proof, we direct the reader to the appendix. Since ANe(x) ≤ AD(x) for all452

words x, Theorem 33 also implies:453

▶ Corollary 34. For every q ∈ (0, 1/2), {x ∈ Σ∗ : AD(x) ≥ q|x| } is CFL-immune.454

4 Lq Cannot Be Recognised by Some Constant-Depth Circuits455

In this section, we expand on our work in Section 3 by investigating the complexity of Lq456

further. Instead of considering pushdown automata, in this section we consider constant-457

depth circuits. We show that two types of circuits cannot recognise Lq either, which is458

analogous to Theorem 32 for pushdown automata.459

7 See in particular the proof of Proposition 26 to note that I(u2,v2) can be generated by sets of the
form h(σk), and by a similar argument, by those of the form h(σk).

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:13

Fix q ∈ (0, 1/2) and Σ = {0, 1}. We first introduce two types of constant depth circuits460

explicitly—the class SAC0 in Section 4.1, and
⊕

SAC0 in Section 4.2—and then show that461

neither can recognise Lq, nor its complement.462

4.1 The Circuit Class SAC0
463

Suppose k ≥ 1. A language L is SACk-recognisable if it is recognised by a polynomial-464

size, O(logk n)-depth, uniform semi-unbounded fan-in circuit.8 Of these classes of particular465

interest is SAC1, since it equals the class logCFL of languages which are log-space reducible466

to context-free languages [41, 42]. More generally, the classes SACk enjoy the following467

relationship with the classical classes ACk and NCk: for all k ≥ 1,468

NCk ⊆ SACk ⊆ ACk ⊆ NCk+1.469

Just like NCk and ACk, the class SACk is also closed under complements [3, Corollary 15].470

Here, we consider the class SAC0. Contrary to the classes above, SAC0 is not closed471

under complementation [3]. Note that SAC0-circuits have constant depth; hence, the SAC0-472

recognisable languages can be characterised by formulas in a simple propositional language,473

as expressed in Lemma 37. We give a formal definition of SAC0 due to Kjos-Hanssen [19].474

▶ Definition 35. A language L ⊂ {0, 1}∗ is SAC0-recognisable if there exists a fam-475

ily (Ci)i<ω of Boolean circuits which recognises L and which satisfies the following:476

1. Each Ci is defined over the basic set {∧,∨} and accepts negative literals.477

2. The family (Ci)i<ω has constant depth.478

3. Each Ci has unbounded fan-in-∨ and bounded fan-in-∧.479

4. Each Ci accepts words of length i.480

▶ Remark 36. Note that, for the classes SACk with k > 0, an additional constraint needs to481

be imposed: the size of the circuit should be polynomial in n. However, this requirement is482

redundant for SAC0; cf. [19, Remark 30].483

An important characterisation of SAC0-recognisable languages, which can be deduced484

from the distributive properties of propositional languages is the following (cf. [19]).485

▶ Lemma 37. A language L ⊂ Σ∗ is SAC0-recognisable if and only if there exists c ∈ N such486

that: for every n ∈ N and every x ∈ Σn there exists kn ∈ N and a formula ψn =
∨kn

i=1 φi,n487

for which φi,n is a conjunction of at most c literals, and488

x ∈ L ⇐⇒ ψn(x) holds.489

Using this lemma, our theorem follows at once:490

▶ Theorem 38. Lq ̸∈ SAC0 and Σ∗ \ Lq ̸∈ SAC0.491

Proof. The proof uses a counting argument using Lemma 37. First, suppose Lq ∈ SAC0,492

witnessed by a sequence of formulas (ψn)n<ω. Consider ψ1. Since φi,1 mentions at most c493

variables, the circuit accepts every word which agrees on these c variables. This leaves494

at least 2n−c words accepted by ψ1. Yet the order of Lq is o(2n), by Corollary 18, which495

contradicts the fact that (ψn)n<ω recognises Lq.496

8 Requiring uniformity is debatable; see e.g. [19, Remark 29].

CVIT 2016

23:14 Languages of Words of Low Automatic Complexity Are Hard to Compute

Now, suppose Σ∗ \ Lq ∈ SAC0, again accepted by (ψn)n<ω. Separate the positive from497

the negative literals in φ1; there are at most c′ ≤ c such positive literals. Thus, for any498

word x = x1 · · ·xn ∈ Σ∗, if xi = 1 for all such positive literals, and xi = 0 everywhere else,499

then ψ1 accepts x. But for large enough n, such x is in Lq by Lemma 11, which contradicts500

the fact that (ψn)n<ω recognises Σ∗ \ Lq. ◀501

4.2 The Circuit Class ⊕SAC0
502

In this section, we consider the class
⊕

SAC0, whose definition differs that of SAC0 only in503

the choice of basic set. Let ⊕ denote the XOR operation.504

▶ Definition 39. A language L ⊂ {0, 1}∗ is
⊕

SAC0-recognisable if there exists a fam-505

ily (Ci)i<ω of Boolean circuits which recognises L and which satisfies the following:506

1. Each Ci is defined over the basic set {∧,⊕} and accepts negative literals.507

2. The family (Ci)i<ω has constant depth.508

3. Each Ci has unbounded fan-in-⊕ and bounded fan-in-∧.509

4. Each Ci accepts words of length i.510

From this definition and the following observation, we can investigate languages larger511

than binary. Recall that in the previous subsection, we focussed solely on the two-element512

alphabet {0, 1}. This was forced by the fact that Boolean expressions have trouble expressing513

Boolean operations on non-binary languages (e.g. what does 0 ∧ 2 evaluate to?). This can be514

remedied in the class
⊕

SAC0 for some languages, courtesy of the operator ⊕.515

It is readily seen that ({0, 1},⊕,∧) is isomorphic to the field of two elements F2 =516

(Z/2Z,+,×). (Studying Boolean circuits in terms of the arithmetic of F2 goes back to Gál517

and Wigderson [7]. We also mention here similarities to the work of Razborov-Smolensky518

[30, 36, 35].) To extend this equivalence beyond binary alphabets, take the field Fp for some519

prime p > 2. By interpreting (⊕,∧) as (+,×) mod p, we extend SAC0-recognisability to520

alphabets of prime cardinality. Below, we give a natural extension of the characterisation521

of SAC0-recognisability in terms of propositional formulas, as given in Lemma 37.9522

▶ Definition 40. Let |Σ| = p for some p ∈ P. Then L is
⊕

SAC0-recognisable if there523

exists c ∈ N such that: for every n ∈ N and every x ∈ Σn there exists kn ∈ N and a524

formula ψn =
⊕kn

i=1 φi,n for which φi,n is a conjunction of at most c literals and525

x ∈ L ⇐⇒ ψn(x) ̸= 0.526

▶ Remark 41. Observe that there is a subtle difference between SAC0 and
⊕

SAC0 in the527

case p = 2. An SAC0 circuit accepts a word x ∈ Σn if any term in the disjunction of ψn(x)528

holds. On the contrary, in
⊕

SAC0, the disjunction is interpreted as addition modulo 2,529

and hence x is accepted only if the number of terms in the disjunction of ψn is odd. Also,530

note that Definition 40 requires a real-world formalism in which gates are able to carry531

out addition and multiplication modulo p as a primitive. This assumption is not needed532

when p = 2, as such Boolean circuits can be modelled using ⊕ and ∧, as mentioned.533

For completeness, we mention here that SAC0 ̸= coSAC0 (see [3]), while co
⊕

SAC0 =534 ⊕
SAC0 (inverting a polynomial in a finite field requires only a constant number of layers;535

we use this fact in the proof of Theorem 45). Further, SAC0 ̸⊆
⊕

SAC0 [19, Theorem 39].536

Below, we prove the following complexity characterisation of alphabets of prime cardinality.537

▶ Theorem 45. Let |Σ| = p for some p ∈ P. Then Lq ̸∈
⊕

SAC0 and Σ∗ \ Lq ̸∈
⊕

SAC0.538

9 For a classical definition of
⊕

SAC0 in terms of the complexity of Boolean circuits see e.g. [19, 4.].

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:15

4.2.1 Field-Theoretic Facts539

By translating prime-cardinality-alphabets into finite fields, we may use the tools of field the-540

ory. In this section, we collect facts about finite fields which we require to prove Theorem 45.541

▶ Lemma 42. Let F be a finite field.542

1. By prime decomposition, F has prime characteristic.543

2. F has order pn for some p ∈ P. [6, 33.2, 33.10]544

3. If F has order pn then F has characteristic p. [5, Sec. 14.3]545

4. For every p ∈ P and n ∈ N, there is one field up to isomorphism of order pn [6, 33.12].546

This field has a subfield of order p, the prime subfield.547

5. All functions from F to itself are polynomial functions. [6, Exercises 22: 31.c.]548

6. If F has order pn and x ∈ F then xpm = xpm+n for all m ∈ N. In particular, x = xpn ,549

since the multiplicative subgroup of F has order pn − 1. [5, p. 550]550

If p ∈ P and n ∈ N, let Fpn denote the (unique up to isomorphism) field of order pn.551

▶ Lemma 43. Suppose φ : Fpn → Fp is linear, i.e. φ(x+y) = φ(x)+φ(y) and φ(ax) = aφ(x)552

for all x, y ∈ Fpn and a ∈ Fp. Then there exist a1, . . . , an ∈ Fpn for which φ(x) =
∑n

i=1 aix
pi .553

In fact, every linear function from Fpn to Fp arises in this way.554

For a proof and related details on field traces, see for instance [23, Theorem 2.24] and [23,555

Chapter 2.3]. In fact, their proof shows that there exists one z ∈ Fpn for which ai = zpi . We556

now give a characterisation of
⊕

SAC0 in terms of finite fields and their operations. This557

characterisation is akin to that of SAC0 in Lemma 37 in terms of propositional formulas.558

▶ Proposition 44. Let ϕn : Fn
p → Fpn be a linear isomorphism of vector spaces over Fp, and559

suppose L ⊂ Σ∗ is
⊕

SAC0-recognisable. Then there exists a family of polynomials (φn)n∈N560

with φn : Fpn → Fp for which561

x ∈ L ∩ Σn ⇐⇒ (φn ◦ ϕn)(x) ̸= 0562

and for which there exists ℓ ∈ N such that for all n ∈ N we have deg(φn) ≤ pn − pn−ℓ.563

For the proof, we direct the reader to the appendix. We now combine the field-theoretic564

tools above to prove the main theorem of this section.565

▶ Theorem 45. Let |Σ| = p for some p ∈ P. Then Lq ̸∈
⊕

SAC0 and Σ∗ \ Lq ̸∈
⊕

SAC0.566

Proof. Suppose some circuit recognises Lq. By Proposition 44, there exists a family of567

polynomials (ψn) and ℓ ∈ N for which x ∈ Lq if and only if (ψn ◦ ϕ)(x) ̸= 0 and deg(ψn) ≤568

pn − pn−ℓ. So, the number of roots of ψn—and hence the number of words not in Lq—is569

bounded above by pn − pn−ℓ, so the cardinality of Lq is in Ω(pn), contradicting Corollary 18.570

For the complement Σ∗ \Lq, note that the circuit can be augmented by a constant number571

of layers to flip the output10 of ψn ◦ ϕ for any n. If ax = (ψn ◦ ϕ)(x) ̸= 0 then use Lemma 42572

Item 6 to see that ap
x = ax; thus ap−1

x = 1, and so the polynomial θ(x) = 1 − xp−1 satisfies573

θ(x) = 0 ⇐⇒ ax ̸= 0.574

As p is fixed, θ can be computed by a constant-depth circuit, which we may append to575

any
⊕

SAC0-circuit recognising Lq to recognise Σ∗ \ Lq. Since the former does not exist,576

neither does the latter. ◀577

10 Recall that the range of ψn ◦ ϕ−1
n is contained in Fp.

CVIT 2016

23:16 Languages of Words of Low Automatic Complexity Are Hard to Compute

4.2.2 Partial Generalisations to Non-prime-Cardinality Alphabets578

We provide a partial generalisation to non-prime-alphabets. Although our theorem reaches579

the same conclusion as Theorem 45, the generalisation is partial as we redefine the definition580

of
⊕

SAC0-recognisability to make our arguments amenable to non-prime cardinality settings.581

Fix q ∈ (0, 1/2) and an alphabet Σ with |Σ| = r, where r is not prime. Let p > r be the582

smallest prime greater than r. Let Σp be an alphabet of cardinality p which contains Σ. As583

before, identify Σp with Fp. We now work over Σp.584

▶ Definition 46. A language L ⊂ Σ∗
r is

⊕
SAC0

r-recognisable if it is
⊕

SAC0-recognisable585

over the field Fp by a family of polynomials (φn)n∈N for which φn : Fpn → Fp (as per586

Proposition 44) and for which the following conditions hold: for all n ∈ N we have587

1. φn(x) = 1 if x ∈ Σn
r ∩ Lq;588

2. φn(x) = 0 if x ∈ Σn
r \ Lq;589

3. φn(x) ∈ Fp \ {1} otherwise.590

We use this re-definition to code information about the language Σr as it is embedded591

in Σp. This renders Definition 46 more restrictive than Definition 39, so the following theorem592

is slightly weaker than its counterpart Theorem 45; the proofs are similar.593

▶ Theorem 47. Let |Σ| = r for some r ̸∈ P. Then Lq ̸∈
⊕

SAC0
r and Σ∗ \ Lq ̸∈

⊕
SAC0

r.594

5 Open Questions595

In this paper, we proved multiple results on the complexity of the measure ANe via the proxy596

family of sets {Lq : q ∈ (0, 1/2) }. In particular, we showed that Lq is complicated from the597

viewpoint of pushdown automata (Theorems 32 and 33 and Corollary 34), and even certain598

Boolean circuits cannot recognise Lq, nor its complement (Theorems 38 and 45). We also599

proved the Shannon effect for ANe (Theorem 20). Pressing open questions pertain to refining600

these results on Lq—and, ultimately, to understanding the measure ANe even better.601

In Section 4.2, we considered alphabets of prime cardinality, and we give a generalisation602

to non-prime-cardinality alphabets in Section 4.2.2. However, our proof of said result uses a603

non-standard definition of
⊕

SAC0. Hence we wonder:604

▶ Question 48. Do the results from Theorem 45 apply to arbitrary alphabets using the605

definition of
⊕

SAC0 given in Definition 39? In other words, does Theorem 47 hold even606

without the weakening in Definition 46?607

By definition, it is clear that ANe(x) ≤ AN (x) for all x ∈ Σ∗, for any finite alphabet Σ.608

Whether equality holds remains the cardinal open question to fully understand the impact of609

exactness in Definition 7 compared to Definition 4.610

▶ Question 49. Let Σ = {0, 1}. Does there exist x ∈ Σ∗ for which ANe(x) < AN (x)?611

References612

1 Scott Aaronson. Complexity Zoo [online]. 2025. https://complexityzoo.net/Complexity_613

Zoo. URL: https://complexityzoo.net/Complexity_Zoo [cited 18 Apr 2025].614

2 Achilles A. Beros, Bjørn Kjos-Hanssen, and Daylan Kaui Yogi. Planar digraphs for automatic615

complexity. In Theory and applications of models of computation, volume 11436 of Lecture616

Notes in Comput. Sci., pages 59–73. Springer, Cham, 2019. URL: https://doi.org/10.1007/617

978-3-030-14812-6_5, doi:10.1007/978-3-030-14812-6_5.618

https://complexityzoo.net/Complexity_Zoo
https://complexityzoo.net/Complexity_Zoo
https://complexityzoo.net/Complexity_Zoo
https://complexityzoo.net/Complexity_Zoo
https://doi.org/10.1007/978-3-030-14812-6_5
https://doi.org/10.1007/978-3-030-14812-6_5
https://doi.org/10.1007/978-3-030-14812-6_5
https://doi.org/10.1007/978-3-030-14812-6_5

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:17

3 Allan Borodin, Stephen A. Cook, Patrick W. Dymond, Walter L. Ruzzo, and Martin Tompa.619

Two applications of inductive counting for complementation problems. SIAM J. Comput.,620

18(3):559–578, 1989. doi:10.1137/0218038.621

4 Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity. Theory622

and Applications of Computability. Springer, New York, 2010. URL: https://doi-org.623

helicon.vuw.ac.nz/10.1007/978-0-387-68441-3, doi:10.1007/978-0-387-68441-3.624

5 David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons, Inc., Hoboken,625

NJ, third edition, 2004.626

6 John B Fraleigh. A first course in abstract algebra. Pearson Education, Philadelphia, PA, 7th627

edition, 2003.628

7 Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arithmetic analogs. In629

Proceedings of the Seventh International Conference on Random Structures and Algorithms630

(Atlanta, GA, 1995), volume 9, pages 99–111, 1996. doi:10.1002/(sici)1098-2418(199608/631

09)9:1/2<99::aid-rsa7>3.0.co;2-6.632

8 Seymour Ginsburg. The mathematical theory of context-free languages. McGraw-Hill Book633

Co., New York-London-Sydney, 1966.634

9 Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.635

J. ACM, 12(1):42–52, January 1965. doi:10.1145/321250.321254.636

10 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,637

languages, and computation. Pearson, Upper Saddle River, NJ, 3 edition, June 2006.638

11 Kayleigh Hyde. Nondeterminstic Finite State Complexity. Master’s thesis, University of639

Hawai’i at Mānoa, 2013. URL: http://hdl.handle.net/10125/29507.640

12 Kayleigh K. Hyde and Bjørn Kjos-Hanssen. Nondeterministic automatic complexity of641

overlap-free and almost square-free words. Electron. J. Combin., 22(3):Paper 3.22, 18, 2015.642

doi:10.37236/4851.643

13 Bakhadyr Khoussainov and Anil Nerode. Automata theory and its applications, volume 21 of644

Progress in Computer Science and Applied Logic. Birkhäuser Boston, Inc., Boston, MA, 2001.645

doi:10.1007/978-1-4612-0171-7.646

14 Bjørn Kjos-Hanssen. On the complexity of automatic complexity. Theory Comput. Syst.,647

61(4):1427–1439, 2017. doi:10.1007/s00224-017-9795-4.648

15 Bjørn Kjos-Hanssen. Automatic complexity of shift register sequences. Discrete Mathemat-649

ics, 341(9):2409–2417, 2018. URL: https://www.sciencedirect.com/science/article/pii/650

S0012365X18301559, doi:10.1016/j.disc.2018.05.015.651

16 Bjørn Kjos-Hanssen. Automatic complexity of fibonacci and tribonacci words. Discrete Applied652

Mathematics, 289:446–454, 2021. URL: https://www.sciencedirect.com/science/article/653

pii/S0166218X20304698, doi:10.1016/j.dam.2020.10.014.654

17 Bjørn Kjos-Hanssen. An incompressibility theorem for automatic complexity. Forum Math.655

Sigma, 9:e62, 7, 2021. doi:10.1017/fms.2021.58.656

18 Bjørn Kjos-Hanssen. Automatic complexity—a computable measure of irregularity, volume 12657

of De Gruyter Series in Logic and its Applications. De Gruyter, Berlin, [2024] ©2024. doi:658

10.1515/9783110774870.659

19 Bjørn Kjos-Hanssen. Maximal automatic complexity and context-free languages. In Aspects of660

computation and automata theory with applications, volume 42 of Lect. Notes Ser. Inst. Math.661

Sci. Natl. Univ. Singap., pages 335–352. World Sci. Publ., Hackensack, NJ, [2024] ©2024.662

20 A. N. Kolmogorov. Three approaches to the definition of the concept “quantity of information”.663

Problemy Peredači Informacii, 1(vyp. 1):3–11, 1965.664

21 L. A. Levin. Laws of information conservation (nongrowth) and aspects of the foundation of665

probability theory. Problems Inform. Transmission, 10(3):206–210, 1974.666

22 Leonid A. Levin. Some theorems on the algorithmic approach to probability theory and667

information theory: (1971 dissertation directed by a.n. kolmogorov). Annals of Pure and668

Applied Logic, 162(3):224–235, 2010. Special Issue: Dedicated to Nikolai Alexandrovich Shanin669

CVIT 2016

https://doi.org/10.1137/0218038
https://doi-org.helicon.vuw.ac.nz/10.1007/978-0-387-68441-3
https://doi-org.helicon.vuw.ac.nz/10.1007/978-0-387-68441-3
https://doi-org.helicon.vuw.ac.nz/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<99::aid-rsa7>3.0.co;2-6
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<99::aid-rsa7>3.0.co;2-6
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<99::aid-rsa7>3.0.co;2-6
https://doi.org/10.1145/321250.321254
http://hdl.handle.net/10125/29507
https://doi.org/10.37236/4851
https://doi.org/10.1007/978-1-4612-0171-7
https://doi.org/10.1007/s00224-017-9795-4
https://www.sciencedirect.com/science/article/pii/S0012365X18301559
https://www.sciencedirect.com/science/article/pii/S0012365X18301559
https://www.sciencedirect.com/science/article/pii/S0012365X18301559
https://doi.org/10.1016/j.disc.2018.05.015
https://www.sciencedirect.com/science/article/pii/S0166218X20304698
https://www.sciencedirect.com/science/article/pii/S0166218X20304698
https://www.sciencedirect.com/science/article/pii/S0166218X20304698
https://doi.org/10.1016/j.dam.2020.10.014
https://doi.org/10.1017/fms.2021.58
https://doi.org/10.1515/9783110774870
https://doi.org/10.1515/9783110774870
https://doi.org/10.1515/9783110774870

23:18 Languages of Words of Low Automatic Complexity Are Hard to Compute

on the occasion of his 90th birthday. URL: https://www.sciencedirect.com/science/670

article/pii/S0168007210001211, doi:10.1016/j.apal.2010.09.007.671

23 Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics672

and its Applications. Cambridge University Press, Cambridge, second edition, 1997. With a673

foreword by P. M. Cohn.674

24 O. B. Lupanov. The synthesis of contact circuits. Dokl. Akad. Nauk SSSR (N.S.), 119:23–26,675

1958.676

25 O. B. Lupanov. The schemes of functional elements with delays. Problemy Kibernet., (23):43–81,677

303, 1970.678

26 R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group. Michigan679

Math. J., 9:289–298, 1962. URL: http://projecteuclid.org/euclid.mmj/1028998766.680

27 Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,681

1966.682

28 Jaban Meher and M. Ram Murty. Ramanujan’s proof of Bertrand’s postulate. Amer. Math.683

Monthly, 120(7):650–653, 2013. doi:10.4169/amer.math.monthly.120.07.650.684

29 Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Faster algorithms for ranking/un-685

ranking bordered and unbordered words. In Zsuzsanna Lipták, Edleno Moura, Karina Figueroa,686

and Ricardo Baeza-Yates, editors, String Processing and Information Retrieval, pages 257–271,687

Cham, 2025. Springer Nature Switzerland.688

30 A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis689

with logical addition. Mathematical notes of the Academy of Sciences of the USSR, 41(4):333–690

338, Apr 1987. URL: https://link.springer.com/content/pdf/10.1007/BF01137685.pdf,691

doi:10.1007/BF01137685.692

31 Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge693

University Press, USA, first edition, 2008.694

32 Jeffrey Shallit and Ming-Wei Wang. Automatic complexity of strings. J. Autom. Lang. Comb.,695

6(4):537–554, 2001. 2nd Workshop on Descriptional Complexity of Automata, Grammars and696

Related Structures (London, ON, 2000).697

33 Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System698

Technical Journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.699

34 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the Fifteenth700

Annual ACM Symposium on Theory of Computing, STOC ’83, pages 330–335, New York, NY,701

USA, 1983. Association for Computing Machinery. doi:10.1145/800061.808762.702

35 R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.703

In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC704

’87, pages 77–82, New York, NY, USA, 1987. Association for Computing Machinery. doi:705

10.1145/28395.28404.706

36 R. Smolensky. On representations by low-degree polynomials. In Proceedings of 1993 IEEE707

34th Annual Foundations of Computer Science, pages 130–138, 1993. doi:10.1109/SFCS.1993.708

366874.709

37 Ray J Solomonoff. A preliminary report on a general theory of inductive inference. Zator710

Company Cambridge, MA, 1960.711

38 Ray J Solomonoff. A formal theory of inductive inference. part i. Information and control,712

7(1):1–22, 1964.713

39 Ray J Solomonoff. A formal theory of inductive inference. part ii. Information and control,714

7(2):224–254, 1964.715

40 John Stillwell. Elements of number theory. Undergraduate Texts in Mathematics. Springer-716

Verlag, New York, 2003. doi:10.1007/978-0-387-21735-2.717

41 I. H. Sudborough. On the tape complexity of deterministic context-free languages. J. Assoc.718

Comput. Mach., 25(3):405–414, 1978. doi:10.1145/322077.322083.719

42 H. Venkateswaran. Properties that characterize LOGCFL. J. Comput. System Sci., 43(2):380–720

404, 1991. doi:10.1016/0022-0000(91)90020-6.721

https://www.sciencedirect.com/science/article/pii/S0168007210001211
https://www.sciencedirect.com/science/article/pii/S0168007210001211
https://www.sciencedirect.com/science/article/pii/S0168007210001211
https://doi.org/10.1016/j.apal.2010.09.007
http://projecteuclid.org/euclid.mmj/1028998766
https://doi.org/10.4169/amer.math.monthly.120.07.650
https://link.springer.com/content/pdf/10.1007/BF01137685.pdf
https://doi.org/10.1007/BF01137685
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1007/978-0-387-21735-2
https://doi.org/10.1145/322077.322083
https://doi.org/10.1016/0022-0000(91)90020-6

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:19

43 I. Wegener. The Complexity of Boolean Functions. Wiley Teubner on Applicable Theory in722

Computer Science. Wiley, 1987.723

A Proofs of Technical Theorems in the Main Body724

We provide missing proofs to the theorems given in the main body of the text. The numbering725

between theorems in the main body and in the appendix is consistent.726

▶ Proposition 16. If x ∈ Σn ∩ Lq, then727

Ck(x) ≤ n− (1 − 2q)
2

√
n+ 5 logk(n) +O(1).728

Proof. Assume that Proposition 13 showed there is a word z ≺ x which occurs twice, but not729

as a square11. In order to code x, one only needs to code z as well as the starting positions730

of its first and second copy inside x, plus the remaining bits. The fact that |z| ≥ (1−2q
2)

√
n—731

which follows from Proposition 13—is crucial here. Since z appears twice inside x, there732

exist w,w′ ≺ x such that zw = w′z. We can locate the two copies of z inside x explicitly:733

define ℓ, ℓ′, t < n such that734

ℓ is the starting index of the first copy of z inside x;735

ℓ′ is the starting index of the second copy of z inside x; and736

t is the fist index after the second copy of z inside x.737

In particular, z = x[ℓ,ℓ+|z|−1] = x[ℓ′,t−1], which we use to write738

x = x[0,ℓ−1]zwx[t,n−1] = x[0,ℓ−1]w
′zx[t,n−1].739

For ease of readability, we rewrite this again as740

x = x1zwx2 = x1w
′zx2.741

We now isolate an upper bound on Ck(x). Let m = [logk(n)] + 1, and define the following742

shorthand: for n < km − 1, denote by cn the k-ary expression of n in a string of length12 m.743

Then consider the string744

c = 0m1c|x1|c|z|c|w|c|x2|x1wx2.745

Since |z| ≥ (1−2q
2)

√
n, we know that |x1wx2| ≤ n− (1−2q

2)
√
n. Combining this with the fact746

that |0m1c|x1|c|z|c|w|c|x2|| = 5m+ 1, we obtain747

|c| ≤ n− (1 − 2q)
2

√
n+ 5m+ 1 ≤ n− (1 − 2q)

2
√
n+ 5 logk(n) +O(1).748

One can now compute x from c via the Second Lyndon-Schützenberger-Theorem. ◀749

▶ Theorem 33. For every q ∈ (0, 1/2), the language Σ∗ \ Lq is CFL-immune.750

11 The case where the square z2 appears is even easier, as less information needs to be coded.
12 I.e. add leading zeroes to fill up the string to length m, if needed. Note that m is defined to be sufficiently

large for this coding to work.

CVIT 2016

23:20 Languages of Words of Low Automatic Complexity Are Hard to Compute

Proof. Recall that Σ∗ \Lq = {x ∈ Σ∗ : ANe(x) ≥ q|x| }. By the Pumping Lemma for CFGs,751

if L is an infinite context-free language, then it contains a set L′ of the form752

L′ = {uaℓvbℓw : u, v, w ∈ Σ∗ ∧ a, b ∈ Σ+ ∧ ℓ ≥ 0 }.753

We show that Σ∗ \ Lq cannot contain any such L′, hence Σ∗ \ Lq cannot contain an infinite754

CFL. Consider some such L′ and denote its defining word by α(ℓ) = uaℓvbℓw. We show that,755

for large enough ℓ, we have ANe(α(ℓ)) < q|α(ℓ)|, proving that L′ ∩ (Σ∗ \ Lq) is finite.756

Consider α(ℓ) with base words a, b. With k =
[

3
q

]
+ 1, define the repetition number ℓ′ by757

ℓ′ = (mk|a||b|) + |b|k.758

Note that ℓ′ depends on m. Now, letting i0 = k|a| and j0 = k|b|, rewrite α(ℓ′) as759

α(ℓ′) = u aℓ′
v bℓ′

w = u
(
am|b|

)i0
ak|b| v

(
bm|a|+1

)j0
w.760

We claim that, for large enough m, there exists only one accepting run in MNe(α(ℓ′)); the761

one in which the loop am|b| is taken exactly i0 times, and, similarly, bm|a|+1 is taken j0 times.762

To see this, suppose there exists a pair (i, j) for which (i0 + i, j0 − j) is a pair of positive763

naturals, and764 ∣∣∣∣(am|b|
)(i0+i) (

bm|a|+1
)(j0−j)

∣∣∣∣ =
∣∣∣∣(am|b|

)i (
bm|a|+1

)j
∣∣∣∣765

which readily reduces to the Diophantine equation766

i(m|a|) + j(−(m|a| + 1)) = 0.767

A particular solution is (i, j) = (m|a| + 1,m|a|), and hence the set of general solutions is768

given by the following (cf. for instance [40, p. 34] for a proof of this classical fact):769

S = { ((m|a| + 1)(1 − t), (m|a|)(1 − t)) : t ∈ Z } = { ((m|a| + 1)t,m|a|t) : t ∈ Z }770

Note that the solution t = 0 corresponds to our choice of (i0, j0).We show that, once m is large771

enough, no other solution for t is possible. To see this, note that e.g. t = 1 implies i = m|a|+1772

and j = m|a|. However, for large enough m, we then have j0 − j = k|b| −m|a| < 0, which773

does not make sense—one cannot traverse a loop a negative number of times. This proves774

exactness. Now, note that for sufficiently large m, we have775

ANe(α(ℓ′)) ≤ |u| + |a|m|b| + |a|k|b| + |v| + |b|(m|a| + 1) + |w| = 2m|a||b| + const776

while777

|α(ℓ′)| = |u| + ℓ′|a| + |v| + ℓ′|b| + |w| = ℓ′(|a| + |b|) + const = (mk|a||b|)(|a| + |b|) + const.778

We now complete the proof by noting that779

ANe(α(ℓ′)) ≤ 2m|a||b| ≤ q

(
m

(
3
q

)
|a||b|

)
(|a| + |b|) < q (mk|a||b|) (|a| + |b|) ≤ q|α(ℓ′)|.◀780

▶ Proposition 44. Let ϕn : Fn
p → Fpn be a linear isomorphism of vector spaces over Fp, and781

suppose L ⊂ Σ∗ is
⊕

SAC0-recognisable. Then there exists a family of polynomials (φn)n∈N782

with φn : Fpn → Fp for which783

x ∈ L ∩ Σn ⇐⇒ (φn ◦ ϕn)(x) ̸= 0784

and for which there exists ℓ ∈ N such that for all n ∈ N we have deg(φn) ≤ pn − pn−ℓ.785

J. Chen, B. Kjos-Hanssen, I. Koswara, L. Richter and F. Stephan 23:21

Proof. As we work in Fp, we identify ⊕ with addition modulo p, and write x+ y for x⊕ y.786

Consider the family (ψn)n∈N given by Definition 40. So, there exists kn ∈ N for which787

ψn(x) =
kn∑
i=1

mi∏
j=1

π(i,j)(x)

788

where π(·,·) is a projection function from Fn
p to Fp. Note that since the Boolean circuit has789

constant depth, the sequence (mi)i∈N is bounded. Consider the composition φn:790

φn(x) = (ψn ◦ ϕ−1
n)(x) =

kn∑
i=1

mi∏
j=1

π(i,j)(ϕ−1
n (x))

791

Note that φn ◦ ϕn = ψn and thus x ∈ L ∩ Σn if and only if (φn ◦ ϕn)(x) ̸= 0; so, φn is as792

needed. We now show that φn is a polynomial. Since π(·,·) and ϕ−1
n are linear, so is their793

composition, whose range is contained in Fp. Lemma 43 tells us now that π(i,j) ◦ ϕ−1
n may794

be expressed as795

(π(i,j) ◦ ϕ−1
n)(x) =

n∑
t=1

a(i,j,ℓ)x
pt

.796

Therefore, φn itself is a polynomial on Fpn with range in Fp. To bound the degree of φn, use797

distributivity in the field Fp and Lemma 43 to write798

φn(x) = (ψn ◦ ϕ−1
n)(x) =

kn∑
i=1

mi∏
j=1

(
n∑

t=1
a(i,j,t)x

pt

) =
∑

B∈P({1,...,n})

aB

∏
j∈B

xpn−(n−j)

799

where P(·) denotes the power set and aB ∈ Fp for every B ∈ P({1, . . . , n}). Recall from800

Lemma 42 Item 6 that xpm+n = xpm ; thus there exists some ℓ ≥ 1 for which801

deg(φn) ≤ pn−1 + . . .+ pn−ℓ ≤ (p− 1)
(
pn−1 + . . .+ pn−ℓ

)
= pn − pn−ℓ ◀802

CVIT 2016

	1 Introduction
	1.1 Technical Background
	1.2 Our Theorems and the Structure of This Paper

	2 Combinatorial Properties of Lq
	3 Lq Is Not Context-Free
	3.1 Only Rich CFGs Can Generate Lq
	3.2 Every Rich CFG Generates High-Complexity Words

	4 Lq Cannot Be Recognised by Some Constant-Depth Circuits
	4.1 The Circuit Class SAC0
	4.2 The Circuit Class SAC0
	4.2.1 Field-Theoretic Facts
	4.2.2 Partial Generalisations to Non-prime-Cardinality Alphabets

	5 Open Questions
	A Proofs of Technical Theorems in the Main Body

