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Abstract. For N ≥ 2, we study the structure of definable abelian group extensions of the
additive group (RN ,+) by countable abelian (Borel) groups G. Given an extension H of (RN ,+)
by G, we measure the definability of H by investigating its complexity as a Borel set. We do
this by combining homological algebra and descriptive set theory, and hence study the Borel
complexity of those functions inducing H, the abelian cocycles. We prove that, for every N ≥ 2,
there are no non-trivial Borel definable abelian cocycles coding group extensions of (RN ,+) by
a countable abelian group G, and hence show that no non-trivial such group extensions exist.
This completes the picture first investigated by Kanovei and Reeken in 2000, who proved the
case N = 1, and whose techniques we adapt in this work.

1. Introduction

In this paper, we contribute to the study of definable classical mathematics. By classical
mathematics we mean those mathematical subjects traditionally unrelated to mathematical
logic. The idea of definability is interpreted broadly: as opposed to the universal yet rigid
model-theoretical definition, we mean the classification of instances of classical mathematical
problems in terms of measures at home in mathematical logic.

One of the earlier examples of the application of logic to classical mathematics was given
by Shelah’s celebrated solution to the Whitehead problem [36], but many have followed suit.
Applications of this research programme feature prominently in major areas of contemporary
logic such as reverse mathematics [11, 37] and computability theory [38]. More finely, the
study of reductions and effective measures of complexity play an important role throughout
modern logic, emphasised by notions such as Weihrauch reducibility [4], computable analysis
[41], algorithmic randomness [25, 32, 9], and many more. Crucially, many of these admit natural
connections to classical mathematics, such as the effective relationship between fractal geometry
and algorithmic randomness [29, 27, 15, 28].

In this paper, we continue this trend. We choose as our measure framework the study of
subsets of the reals in terms of descriptive set theory and apply it to (homological) algebra: we
consider the problem of group extensions of abelian groups by abelian groups, and measure which
of them are definable in the context of descriptive set theory. Analysing the Borel definability
of group extensions garnered interest in the 1960s through work of Moore [30] and DuPre [10],
and was re-investigated by Kanovei and Reeken in the early 2000s [20, 22, 21]. Instead of taking
a strongly algebraic point of view as Moore and DuPre had done, their work was motivated by
ideas in Hyers-Ulam-Rassias-stability [16, 39, 40, 33] which measures the stability of spaces (and,
more generally, categories) in terms of homomorphisms: can every almost homomorphism be
closely approximated by a strict homomorphism? For certain groups, group extensions stand in
equivalence with maps called cocycles, whose properties can be likened to Hyers-Ulam-Rassias-
(in)stability. In combination with the measurability tools of Polish spaces, definable group
extensions can be carefully analysed.

This analysis is our motivation for this paper. We generalise a result of Kanovei and Reeken
concerning the existence of definable group extensions [22] to higher-dimensional topological
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spaces, hence proving that the definable algebraic structure (in the sense of Borel measurability)
of abelian group extensions of the additive groups (R,+) and (RN ,+) for N > 1 does not differ.

To formalise this, let A,G be groups. A group extension of A by G is a short exact sequence:
a sequence c of the form

c : 0 G E A 0i j

where i, j are group homomorphisms, i is injective, j is surjective, and where im(i) = ker(j).
Two group extensions c, c′ with

c′ : 0 G E ′ A 0i′ j′

are equivalent if there is a group isomorphism p for which the following diagram commutes:

E

0 G A 0

E ′

j

p

i′

i

j′

If we require that all groups G,E,A are abelian, then every extension of A by G is in fact
induced by an abelian cocycle (or factor set)—a function from A2 to G which encodes the
structure of E—and vice versa. This is how we study the structure of group extensions here:
we consider group extensions from the point of view of abelian cocycles and their properties in
terms of functional equations; their structure is captured by the cohomology group.

The identification of group extensions in terms of functions between groups has spurred the
investigation of definable group extensions: those induced by an abelian cocycle which is defin-
able. In this paper, definable means Borel measurable: we consider groups which carry a natural
Polish structure, and investigate those group extensions which are induced by Borel cocycles.

Definition 1.1. A group G is a Borel group if G is a Borel subset of a standard Borel (or
Polish) space, and the group operation is a Borel map: the pre-image of every Borel set is
Borel in the inherited topology.

Suppose G,E,A are abelian Borel groups inside standard Borel spaces. A group extension
c : 0 → G → E → A → 0 is Borel definable (or just Borel) if the associated abelian cocycle
generating E is a Borel map.

In order to take advantage of the identification between group extensions and cocycles, we
assume from now on that all groups are abelian. Further, the quotient G is always
assumed to be countable.

With these conventions established, the following theorem [22, Theorem 49] classifies—up to
isomorphism between group extensions—all definable group extensions of the additive group
(R,+) by a (countable) group G in the Borel framework.

Theorem 1.2 (Kanovei and Reeken, 2000). For every group G, the only Borel definable group
extension of (R,+) by G is the trivial extension. In other words, every Borel cocycle C : (R2)2 →
G is a Borel coboundary.

In sections 3 and 4, we prove the following theorem, extending Kanovei and Reeken’s result.

Theorem 4.6. For every N < ω and every group G, the only Borel definable group extension
of (RN ,+) by G is the trivial extension.

The proof uses geometrical arguments, which on the one hand are harder to prove in the
multidimensional case as opposed to the case R in [22], while on the other hand translate
throughout the higher-dimensional cases. As general ideas of the proof of theorem 4.6 are most
easily explained in the case N = 2, we prove the following result first:
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Theorem 3.21. For every group G, the only Borel definable group extension of (R2,+) by G
is the trivial extension.

1.1. The structure of this paper. In section 2 we outline the basics of group theory and
the theory of group extensions needed for our arguments. We also recall the fundamentals of
descriptive set theory which we later use to classify the degree of definability of group extensions.

As we will be using forcing arguments, we shall also consider its basic notions. However, these
will not concern extending models of set theory, and hence remain gentle.

In sections 3 and 4, we prove theorems 3.21 and 4.6, respectively. The proof of theorem 3.21
follows structurally the analogous argument in [22], yet requires more sophisticated arguments
to overcome the geometrical differences between R and R2. The lemmas we prove, however, can
then be extended to prove the theorem on (RN ,+) for any N > 2. We show how to do this in
section 4, where we also conclude theorem 4.6.

We close with section 5, in which we state various open questions, and where we outline related
avenues for research.

2. Background

The theory of group extensions of abelian groups by abelian groups can be expressed in two
ways: category-theoretically (i.e. in terms of short exact sequences, as indicated in section 1)
and in terms of group cohomology, which captures the relationship between certain functions
between groups: cocycles and coboundaries. The former approach has lead to the study of the
Ext functor [12], which is of course of independent interest. In this paper, however, we take the
latter approach. We do this since: if all groups concerned have a Borel structure, then the Borel
complexity of cocycles—which are themselves functions between groups—can be measured and
hence analysed.

Let A be a Borel group. A function C : A2 → G is an abelian 2-cocycle (or just abelian
cocycle) if C(x, 0) = 0 and

C(x, y) = C(y, x) and C(x, y) + C(x+ y, z) = C(x, z) + C(x+ z, y)

for all x, y, z ∈ A. An abelian cocycle is a coboundary if there exists a map h : A → G such
that

C(x, y) = Ch(x, y) = h(x) + h(y)− h(x+ y).

The quotient group of cocycles modulo coboundaries yields the cohomology group H2(A,G)
[35, 9.2], which measures complexity: the more complicated H2(A,G) is as a group, the more
complicated is the structure of group extensions of A by G. It is clear that two cocycles are
equivalent if their difference is a coboundary1.

Remark. The definition of coboundaries hints at the relationship between the theory of group
extensions and the aforementioned Hyers-Ulam-Rassias-stability framework of almost homomor-
phisms: in the sense of Ulam, coboundaries are trivial objects (well-behaved almost homomor-
phisms), just as they are trivial objects in the study of group cohomology (by definition of the
quotient group).

To explain our theorems, we need to introduce descriptive set theory. A topological space is
Polish if it is separable and completely metrisable. The definable subsets of an uncountable
Polish space X can be stratified in hierarchies. At the lowest level sits the Borel hierarchy,
whose sets are generated by the σ-algebra containing the open subsets of X. A set is Borel if it
appears in this hierarchy of length ω1. A function F : X → Y between Polish spaces is a Borel
function if the pre-image of every Borel set is Borel. Hence, every continuous function is Borel.
Further, a function between Polish spaces is Borel if and only if its graph is analytic, i.e. the
continuous image of a Borel set [23, II.14.12]. Since Polish spaces are separable and Hausdorff,

1To see the explicit relationship between cocycles C : A2 → G and group extensions of A by G we recommend
in particular Chapter 9 of [12]. There, it is also shown how the notion of equivalence given here agrees with the
commutative-diagram-equivalence from section 1.
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they have a countable basis of basic open sets, and so every Borel set A has a Borel code: an
element of ωω which codes the construction of A from the basic open sets and countably many
operations of countable union and complementation. For details, see [23, 19].

A simple method to determine whether a set of reals is Borel is provided by the fundamental
relationship between descriptive set theory and computability theory (see references [31, 13, 5]).
The following folklore result is emblematic of this relationship. Some basic concepts follow: if Φ
is a computable procedure (e.g. a Turing machine) and x is a real (in R, 2ω, ωω. . . ), let Φ

(
x(α)

)
denote the procedure Φ initiated with oracle access to the α-th jump of x. If x, z ∈ 2ω then
x⊕ z is the join of x and z. (The join of elements of R is usually expressed as the join of their
binary expansions. For classical computability theory, see e.g. [38].)

Proposition 2.1 (cf. [8, 34]). Let X be uncountable Polish. A set A ⊆ X is Borel if there exists
a code z ∈ ωω, an ordinal2 α < ω1, and a computable procedure Φ for which

x ∈ A ⇐⇒ Φ
(
(x⊕ z)(α)

)
halts in finite time.

Proof. To elucidate the intuition, we sketch the proof of the case α = 1 for X = R. If A is open,
write A =

⋃
(an, bn) where ai, bi ∈ Q. This sequence of pairs is coded by some z (via e.g. the

Cantor pairing function). For each pair (an, bn) coded in z, ask whether an < x < bn. This is a
finite operation since each interval (an, bn) is open. □

2.1. Algebraic properties of abelian cocycles. In the subsequent arguments, we generally
separate algebraic properties of abelian cocycles from non-algebraic properties.

As the name suggests, algebraic properties hold for all abelian cocycles; the underlying space
and its topology are inconsequential. On the contrary, non-algebraic properties depend on the
underlying topological and order-theoretical properties. For instance, the reals R are ordered,
while R2 is not. Hence, any proof of theorem 1.2, if adapted to R2, must take care of such
structural differences.

The difficulties of extending theorem 1.2 reduce to proving topological lemmas which permit
the application of algebraic properties. This is our task in the following section. In this section,
we collect useful algebraic properties of abelian cocycles—all can be found in [22]. Fix an
uncountable group X and a group G and let C : X2 → G be an abelian cocycle.

Lemma 2.2. For all x1, x2, x3 ∈ X we have

C(x1, x2) = C(x1, x3) + C(x1 + x3, x2)− C(x1 + x2, x3).

Cocycles can be extended naturally to accept more arguments: let

C(x1, x2, x3) = C(x1, x2) + C(x1 + x2, x3)

and hence recursively define

C(x1, . . . , xn+1) = C(x1, . . . , xn) + C(x1 + . . .+ xn, xn+1).

Various useful identities can be deduced from this recursive definition, such as the following.

Lemma 2.3. If x1, . . . , xn, xn+1, . . . , xm ∈ X, let x = x1 + . . . + xn and x′ = xn+1 + . . . + xm.
Then

C(x1, . . . , xm) = C(x1, . . . , xn) + C(xn+1, . . . , xm) + C(x, x′).

Recall that a cocycle C is a coboundary if there exists a map h : X → G for which

C(x1, x2) = h(x1) + h(x2)− h(x1 + x2).

A simple induction proves:

Lemma 2.4. Ch(x1, . . . , xn) = h(x1) + . . .+ h(xn)− h(x1 + . . .+ xn)

Further, since H2(X,G) is a group it immediately follows that:

2To the reader familiar with hyperarithmetic theory: α < ωz
1 , the first ordinal not computable from z.
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Lemma 2.5. If Ch and Ck are coboundaries, then Ch + Ck = Ch+k, where (h+ k)(x) = h(x) +
k(x). In particular, if Ch and Ck are Borel coboundaries (i.e. h and k are Borel maps), then so
is Ch+k.

2.2. The set-theoretical setup. We work in a set-theoretical universe V satisfying ZFC. For a
sufficiently rich finite fragment ZFC∗ of ZFC, consider a countable transitive set modelM ⊨ ZFC∗.
Meta-theoretically, our arguments proceed as follows: with a Borel cocycle C and M fixed, we
work inside V and argue that C is in fact a Borel coboundary. We often allude to the fact that
truth in a sufficiently rich extension M [G] of M is forced by some condition (read open set) in
M : there is a comeagre set in V on which the function is constant, for instance. For suitable
G, this gives us a result on V , hence proving that C enjoys said properties in the real world.
The fact that Borel functions have codes whose interpretations are absolute between transitive
models is crucial for this argument to work.

As is customary, when we write “let M be a countable transitive model of ZFC” we mean M
to satisfy a finite fragment of ZFC sufficiently large for the arguments at hand.

In view of proving theorem 3.21, we now consider the specific case A = (R2,+). We also write
R2 in place of (R2,+) to save time.

While the following set-theoretical setup is expressed in terms of R2, it should be clear that
it in fact holds for RN for all N < ω. We work in V and fix a countable group G. Suppose
C : (R2)2 → G is a Borel function. Let z ∈ ωω be a Borel code for C. Now consider a fixed
countable transitive model M of ZFC such that {z,G} ⊂ M .

Let P2 = { (q, q′)× (r, r′) | q, q′, r, r′ ∈ Q }, our version of Cohen-forcing for pairs. As always,
p = I × I ′ ≤ q = J × J ′ (i.e. p is stronger than q) if and only if I ⊆ J and I ′ ⊆ J ′. Further,
define P to be the classical Cohen forcing whose conditions are open sets (q, r) for q, r ∈ Q.
Then P× P = P2 as sets, and also as forcing notions, as the following classical theorem shows.

Theorem 2.6 ([24]). A filter G0 ×G1 is M-generic for P2 iff one of the following holds:

(1) G0 is M-generic for P and G1 is M [G0]-generic for P.
(2) G1 is M-generic for P and G0 is M [G1]-generic for P.

Corollary 2.7. Forcing with P2 × P2 is equivalent to forcing with the product P × P × P × P,
which is equivalent to iterating classical Cohen forcing four times over M .

After forcing with P2 ×P2, we denote the resultant M -generic tuple by (α0, α1, α2, α3), where
theorem 2.7 implies that α0 is M -generic, α1 is M [α0]-generic, α2 is M [α0, α1]-generic, and so
forth.

Lemma 2.8. There exist p = I×J and q = I ′×J ′ and g ∈ G such that diam(q) > diam(p), I lies
in the first quadrant, and if (α0, α1, α2, α3) ∈ p× q is M-generic then C((α0, α1), (α2, α3)) = g.

In other words, some condition forces C to be constant on all generics inside it. For notation,
we say D(I × J) < D(I ′ × J ′) if I ⊊ I ′ and J ⊊ J ′.

Proof. Firstly, note that being a Borel code is Π1
1 [18, II.25.44], and hence absolute by Shoenfield

absoluteness [18, II.25.20]. Therefore, the interpretation CM of z in M is a total function from
RM to G (recalling that G = { gi | i < ω } ∈ M), and this fact is forced by the empty condition.
Hence we may assume p extends some condition in the first quadrant.

Let (α̇0, α̇1, α̇2, α̇3) be a name for the M -generic. By the fundamental theorem of forcing,
there exists a condition p ⊩ C(α̇0, α̇1, α̇2, α̇3) = ǧi for some i < ω. Write p = I × J × I ′ × J ′. Of
course, we can assume D(I×J) to be smaller than D(I ′×J ′). By theorem 2.7, this suffices. □

From now on, with M fixed, we introduce the following notation.

Definition 2.9. If p ∈ P let p∗ denote the set (in V ) of M-generics contained in the condition p.
We also relativise: if x is a real then p∗[x] denotes the set of M [x]-generics contained in p.



6 LINUS RICHTER

Remark. A real is M -generic if and only if it intersects every dense open subset of P that is
an element of M . Since every open set in P (and hence in P2, etc.) has a Borel code (since Rn

is Polish), the following observation is immediate: since R is Baire, the class of M -generics for
P is a comeagre subset of R as viewed in V . Hence, every condition p contains a comeagre-in-p
set of M -generics.

3. The Case N = 2

In this section, we prove that every Borel definable group extension of (R2,+) by a group G
can be trivialised by a Borel coboundary. Let

C : (R2)2 → G

be a Borel cocycle. We argue in a sequence of lemmas which eventually reduces C to a sum of
Borel coboundaries.

Initially, we follow closely the structure laid out in [22], and the lemmas of algebraic type
carry over from their work. As an example, the base case in theorem 3.1 is virtually identical
to their arguments. However, the lemmas needed for our 2-dimensional (and beyond) proof,
viz. theorem 3.2 and theorem 3.3, are more technical due to the topological and geometrical
differences between R and R2. This is particularly emphasised in section 4, where we prove the
general case N > 2.

3.1. Geometrical complications. In the process of trivialising the Borel cocycle C, it is our
goal to show that C is well-behaved on large and well-behaved (e.g. closed) subsets of R2. We
usually argue via generics (as there is a large—in fact comeagre—set of them in V ) and show
that C is well-behaved on generics first; then we reduce to non-generics.

The following theorem 3.1—an adaptation of Lemma 52 in [22]—is the first step in this
reduction process. We break it down into two cases:

Lemma 3.1. Suppose n ∈ {2, 3}, and assume that x1, y1, . . . , xn, yn ∈ p∗ satisfy
∑

i≤n xi =∑
i≤n yi. Then C(x1, . . . , xn) = C(y1, . . . , yn).

The proof is very similar to that of [22]; however, in our context, it requires the following
geometrical lemma (which is trivial on R and hence was not required in [22]).

Lemma 3.2. For x1, y1, x2, y2, x3, y3 ∈ p∗ satisfying x1 + x2 + x3 = y1 + y2 + y3, there exists a
non-zero ϵ ∈ R2 for which

{x1 + ϵ, x2 − ϵ, y2 + δ} ⊂ p

where δ = (y1 − x1)− ϵ. This ϵ can be chosen to be {x1, y1, x2, y2, x3, y3}-generic over M .

Let π0 denote the projection function onto the first coordinate in R2, and define π1 similarly.

Proof. Suppose we are given x1, y1, x2, y2, x3, y3 ∈ p∗. First, assume that

π0(x1) = π0(y1) and π1(x1) > π1(y1)

where the choice of indices and coordinates is made without loss of generality. There are two
cases.

(i) First, assume the two remaining pairs can be split up into (x2, y3) and (x3, y2) both not
pointing downwards, and let D1 = π1(x1) − π1(y1). Since x1 + x2 + x3 = y1 + y2 + y3,
we may assume w.l.o.g. that π1(y2) − π1(x3) ≥ D1/2. Let ϵ = (0, π1(x2) − π1(y3) − γ)
where γ > 0 is sufficiently small and generic (such a γ exists since p is open). It is easily
verified that this ϵ works.

(ii) Second, suppose only one of the two remaining pairs points upwards, w.l.o.g. (x2, y2);
hence π1(y2)− π1(x2) ≥ D1. Then choose ϵ = (0,−γ) where 0 < γ < D1/2 is sufficiently
generic. Again, it is easily verified that this ϵ works.
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Now suppose that no pair (xi, yj) out of x1, y1, x2, y2, x3, y3 can be arranged to share a coordinate.
We argue geometrically: since

∑
i≤3 xi =

∑
i≤3 yi, we know that

∑
i≤3(yi−xi) = 0; hence consider

the triangle ∆ whose sides are given by the vectors (xi − yi). Its set of vertices V is identified
with the pairs of vectors that induce the edges. In particular, let v be the vertex of ∆ where
(y2 − x2) and (y1 − x1) meet.

Let Ri be the unique rectangle with diagonal (yi−xi) and sides parallel to the horizontal and
vertical axes; then

⋃
i≤3Ri bounds a rectangle inside ∆. Further, each Ri is a shift of the unique

condition pi bounding the pair (xi, yi).
By an easy geometrical observation, and w.l.o.g., we have R1 ∩ R2 ̸= ∅, and R2 ∩ R3 = ∅.

Now, let ϵ = β + γ where β ∈ R1 ∩R2, the shift γ is sufficiently generic, and the following hold:

(1) x1 + ϵ ∈ p
(2) x2 − ϵ ∈ p
(3) v + ϵ ∈ R3

A sufficiently small γ exists since p is open. By symmetry of R3 (and hence of p3), since v+ϵ ∈ R3,
we have y3 + δ ∈ p3 ⊂ p. Relabelling y3 to y2 completes the proof. □

Proof of theorem 3.1. For n = 2, the proof is identical to the argument in [22], which we include
here for completeness. Let x1, x2, y1, y2 ∈ p∗ satisfy x1 + x2 = y1 + y2. Take a sufficiently small
condition q < p such that there exists a generic z ∈ q∗[x1,x2,y1,y2] for which z′ = z+ (y1 − x1) ∈ q.
This exists since p is open. Now C(x1, x2, z, z

′) = C(y1, y2, z, z
′) by the following argument: by

the properties of abelian cocycles,

C(x1, x2, z, z
′) = C(x1, z

′) + C(x2, z) + C(x1 + z′, x2 + z)

= 2g + C(x1 + z′, x2 + z)

since the pairs in the first two terms are generic (cf. theorem 2.7). Similarly,

C(y1, y2, z, z
′) = C(y1, z) + C(y2, z

′) + C(y1 + z, y2 + z′)

= 2g + C(y1 + z, y2 + z′).

Now recall that x1 + x2 = y1 + y2; hence x2 + z = y2 + z′, and the equality z′ + x1 = z + y1 is
immediate from the definition. Further,

C(x1, x2, z, z
′) = C(x1, x2) + C(z, z′) + C(x1 + x2, z + z′)

= C(y1, y2) + C(z, z′) + C(y1 + y2, z + z′)

= C(y1, y2, z, z
′)

from which the case n = 2 follows immediately.
For n = 3, we use theorem 3.2: let (ϵ, δ) be as provided by the lemma. Then define, as in [22],

the sequences (x′
i) and (y′i) such that x′

3 = y′3 and

x′
1 = x1 + ϵ, x′

2 = x2 − ϵ, y′1 = y1 − δ, y′2 = y2 + δ

which yields the result at once from the special case above and the properties of abelian cocycles.
□

We prove below the full version of theorem 3.1. Due to the topological differences between R
and R2, the general case of our proposition below is more involved than Kanovei and Reeken’s
counterpart.

Proposition 3.3. Theorem 3.1 holds in fact for all n ≥ 2.

We will prove the proposition by induction; consider case the k+1. Before we give the intricate
general proof, we reproduce the special case from [22], which also applies in the case N = 2 (and
in fact for every N): we assume that xℓ = yℓ for some ℓ ≤ k + 1. To that end, suppose the
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proposition holds below k + 1, let x1, y1, . . . , xk+1, yk+1 ∈ p∗ be given, and suppose w.l.o.g. that
x1 = y1. Then the lemma follows immediately:

C(x1, . . . , xk+1) = C(x2, . . . , xk) + C(x2 + . . .+ xk+1, x1)

= C(y2, . . . , yk) + C(y2 + . . .+ yk+1, y1) = C(y1, . . . , yk+1)

by the inductive hypothesis and the definition of C for more than two inputs, as required.

The general proof of theorem 3.3 is explained geometrically by considering the k + 1-gon Γ
constructed by concatenating the vectors (y1 − x1), . . . , (yk+1 − xk+1) (recall that the specific
labelling of vectors is inconsequential). As before, for every (yi−xi), let Ri denote the rectangle
bounding it, which can be considered the translation of an associated condition pi ⊂ p. Since
p is open, we may extend pi by a small amount in all directions without leaving p; we use this
fact repeatedly.

First, we prove another geometrical lemma.

Lemma 3.4. With x1, y1, . . . , xk, yk ∈ p∗ and k ≥ 3, its associated k-gon Γ can be transformed
into a k-gon Γ′ containing an edge parallel to the second axis without changing the value of C
on Γ′.

Proof. Let Γ be the k-gon induced by the vectors (yi − xi). W.l.o.g. let (y1 − x1) be the vector
with the smallest positive π0-shift; that is, 0 < b = π0(y1) − π0(x1) is minimal among all pairs
(xi, yi). Since

∑
xi =

∑
yi, there exists (y2 − x2) for which π0(x2) > π0(y2). Write b = e + d

where e is sufficiently generic, and define

x′
1 = x1 + (e, 0) , x′

2 = x2 − (e, 0)

y′1 = y1 − (d, 0) , y′2 = y2 + (d, 0)

and put x′
i = xi and y′i = yi everywhere else. Now, all x

′
i, y

′
i ∈ p∗ by minimality of b, and further,∑

x′
i =

∑
xi and

∑
y′i =

∑
yi. But since k ≥ 3, there exists j for which xj = x′

j and yj = y′j.
By the special case,

C(x1, . . . , xk) = C(x′
1, . . . , x

′
k) and C(y1, . . . , yk) = C(y′1, . . . , y

′
k).

Finally, the vector (y′1 − x′
1) is vertical since π0(x

′
1) = π0(x1) + e = π0(y1)− d = π0(y

′
1). □

By symmetry, the same argument holds for the first axis (or any axis in RN). The following
proposition can be considered a repeated application of theorem 3.4, which “smooths” the k-gon
Γ induced by the set of points x1, y1, . . . , xk+1, yk+1 until one of its sides vanishes.

Proof of theorem 3.3. Suppose x1, y1, . . . , xk+1, yk+1 ∈ p∗ and there is no pair (i, j) for which
xi = yj; hence the special case does not apply. By theorem 3.4, we may assume the vector
(y1 − x1) to be vertical, and assume w.l.o.g. that π1(x1) > π1(y1). By minimality, there exists
n < k + 1 and i1, . . . , in such that∑

j≤n

(π1(yij)− π1(xij)) ≥ π1(x1)− π1(y1)

and π1(yij) − π1(xij) > 0 for all j ≤ n. We now build sequences (y
(ℓ)
i − x

(ℓ)
i ) and (e(ℓ), d(ℓ)) for

1 ≤ ℓ ≤ n as follows. First, let x
(1)
i = xi and y

(1)
i = yi for all i ≤ k + 1. We construct the

sequence by recursion on ℓ: with (y
(ℓ)
i − x

(ℓ)
i ) given, consider the following two cases:

(a) Suppose there exist e, d ∈ (0, π1(yiℓ)−π1(xiℓ)+a) (where a is sufficiently small such that
piℓ + (0, a) ⊂ p) for which e is sufficiently generic and

x
(ℓ)
1 − (0, e) = y

(ℓ)
1 + (0, d).

Then let (e(ℓ), d(ℓ)) = (e, d) and stop the recursion.
(b) If no such pair exists, pick e ∈ (π1(yiℓ)−π1(xiℓ), π1(yiℓ)−π1(xiℓ)+a), sufficiently generic,

and put (e(ℓ), d(ℓ)) = (e, e).
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Now define:

x
(ℓ+1)
1 = x

(ℓ)
1 − (0, e(ℓ)) , x

(ℓ+1)
iℓ

= x
(ℓ)
iℓ

+ (0, e(ℓ))

y
(ℓ+1)
1 = y

(ℓ)
1 + (0, d(ℓ)) , y

(ℓ+1)
iℓ

= y
(ℓ)
iℓ

− (0, d(ℓ))

The following claims ensure that the result follows.

Claim 1. C(x1, . . . , xk+1) = C(x
(ℓ)
1 , . . . , x

(ℓ)
k+1) for all ℓ ≤ n.

Proof of Claim 1. The construction shows that
∑

i xi =
∑

i x
(ℓ)
i . Since at least one value x

(ℓ)
j

is preserved when passing from x
(ℓ)
j to x

(ℓ+1)
j , induction proves the result from the special case.

The same argument holds for the sequences (y
(ℓ)
i ). Since

∑
xi =

∑
yi, we have for all ℓ, ℓ′∑

i

x
(ℓ)
i =

∑
i

y
(ℓ′)
i . ⊣

Claim 2. Case (a) above occurs in fewer than n steps.

Proof of Claim 2. Let D(1) = π1(x1) − π1(y1). Suppose Case (a) does not occur. Then, by
construction,

e(1) > π1(yi1)− π1(xi1)

and so
D(2) = π1(x

′
1)− π1(y

′
1) < D(1) − e(1).

Since
∑

π1(yij)− π1(xij) ≥ π1(x1)− π1(y1), the result follows by induction. ⊣

Claim 3. When Case (a) is applied at stage ℓ+1, then C(x
(ℓ+1)
1 , . . . , x

(ℓ+1)
k+1 ) = C(y

(ℓ+1)
1 , . . . , y

(ℓ+1)
k+1 ).

Proof of Claim 3. By construction,

x
(ℓ+1)
1 = x

(ℓ)
1 − (0, e(ℓ)) = y

(ℓ)
1 + (0, d(ℓ)) = y

(ℓ+1)
1

and by Claim 1 and the special case the result follows. ⊣

Combining the claims yields the sequence of equalities

C(x1, . . . , xk+1) = C(x
(ℓ+1)
1 , . . . , x

(ℓ+1)
k+1 ) = C(y

(ℓ+1)
1 , . . . , y

(ℓ+1)
k+1 ) = C(y1, . . . , yk+1)

which completes the proof. □

3.2. Trivialising in stages. The previous proposition shows that C is well-behaved under equal
sums of sequences of equal length. In order to fully trivialise C to a Borel coboundary, we require
more, both algebraically and combinatorially. Most of the arguments in this subsection are of
algebraic type, and hence carry over from R to R2; in this subsection, we reproduce lemmas
from [22] with additional detail, and follow their general proof structure.

Accordingly, we introduce some notation: given a sequence x1, . . . , xn, denote it by (x̄)n,
and hence let

∑
(x̄)n = x1 + . . . + xn. We also write (x̄)n ∈ p∗ if xi ∈ p∗ for all i ≤ n, and

C((x̄)n) = C(x1, . . . , xn). When the length of (x̄)n is clear, we also simply write x̄ in its place.
Further, if k < ω and g ∈ G, write kg = g + . . .+ g containing k-many terms.

The following two combinatorial lemmas are due to [22]. As results in this subsection, as can
be seen from their proofs, hold for all RN ; we state some without proof and refer to [22] for
details.

Lemma 3.5 ([22], Lemma 53). Suppose (x̄)n, (ȳ)m, (x̄
′)n′ , (ȳ′)m′ ∈ p∗ where 1 ≤ m < n and

1 ≤ m′ < n′. Suppose
∑

(x̄)n =
∑

(ȳ)m = s and
∑

(x̄′)n′ =
∑

(ȳ′)m′ = s′. Then

(n′ −m′)(C(x̄)− C(ȳ)) = (n−m)(C(x̄′)− C(ȳ′)).

Lemma 3.6. There exist x̃, ỹ ∈ p∗ and n < ω such that (n+ 1)x̃ = nỹ.

Proof. Fix any x ∈ p∗ and consider the straight line L containing the origin and x. Since p is
open, there exists n < ω for which

(
1 + 1

n

)
x ∈ p∗ ∩ L, which yields the desired y. □
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Definition 3.7. The pair of sequences (x̄)(n+1) and (ȳ)n given by xi = x̃ and yi = ỹ for all i is
the canonical pair, denoted by (λ, µ). The canonical group element is given by

g̃ = C(λ)− C(µ).

Lemma 3.8. For any (x̄)n, (ȳ)m ∈ p∗ with n ≥ m and
∑

x̄ =
∑

ȳ, we have C(x̄) − C(ȳ) =
(n−m)g̃.

Proof. Theorem 3.6 implies (n+1− n)(C(x̄)−C(ȳ)) = (n−m)(C(λ)−C(µ)) = (n−m)g̃. □

Following [22], we define C1 : (R2)2 → G given by

C1(x, y) = C(x, y)− g̃.

By induction, we have C1((x̄)(n+1)) = C((x̄)(n+1))− ng̃. Now, observe that C1(x, y)−C(x, y) =
−g̃, a Borel coboundary: to make this explicit, write B(x) = −g̃ so that

CB(x, y) = B(x) +B(y)−B(x+ y) = −g̃.

Hence it suffices to prove that C1 is a Borel coboundary. Luckily, C1 satisfies stronger closure
properties than C.

Lemma 3.9 ([22] Corollary 54). If (x̄)n, (ȳ)m ∈ p∗ satisfy
∑

(x̄)n =
∑

(ȳ)m and n ≥ m then
C1(x̄) = C1(ȳ).

Proof. By the inductive remark, theorem 3.8 proves

C1(x̄)− C1(ȳ) = C(x̄)− C(ȳ)− (n− 1)g̃ + (m− 1)g̃

= C(x̃)− C(ỹ)− (n−m)g̃ = 0. □

3.3. Trivialising on a closed set. From the difference in complexity between our theorem 3.3
and Lemma 52 in [22], it is clear that the case R2 is not an immediate consequence of the theorem
in the case R. The topological differences between the spaces are emphasised in this section,
where we overcome obstacles not present in the 1-dimensional case. These can be reduced to the
properties of a set t(x) associated with each x ∈ R2. Trivialising on t(x)—similar to trivialising
on [M,∞) in [22]—suffices to prove the theorem.

We begin by identifying a well-behaved subset of R2 on which the invariance properties of C2

apply more broadly. For k < ω, let

k · p = { (kx1, kx2) | (x1, x2) ∈ p }.

As we assumed that p lies in the first quadrant, there exist M < ω and distinct straight lines
L1, L2 such that:

• there exists a straight line L through the origin for which, for some z̃ = (z1, z2) ∈ R2,
the infinite line segment

Lz̃ = { (x1, x2) ∈ L | x1 ≥ z1 ∧ x2 ≥ z2 }

is contained in p+ =
⋃

k>M k · p;
• L1 and L2 are neither equal nor parallel, L1∩L2 ⊂ p+, and the region bounded by L1, L2

which is wholly contained in the first quadrant is also contained in p+.

We show below that such points and lines always exist. We need some notation. In RN , denote
the origin by O. Given a condition p, denote its topological closure by p, and its topological
boundary by ∂p. Let d denote the Euclidean metric.

Lemma 3.10. Such M < ω, straight lines L,L1, L2, and z̃ ∈ R2 exist.

Proof. Consider the sequence (k · p)k<ω of conditions (read open sets), where each k · p has
vertices v1k, v

2
k, v

3
k, v

4
k, labelled anti-clockwise starting with the vertex closest to the origin. Since

p is open, we may assume that p is not a square. Hence suppose that π0(v
2
1) − π0(v

1
1) >
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π1(v
3
1)−π1(v

2
1) (i.e. p is wider than it is high); the other case is similar. Define auxiliary straight

lines L′
1, L

′
2 by

{O, v11} ⊂ L′
1 and {O, v31} ⊂ L′

2.

Note that { v1k | k < ω } ⊂ L′
1 and { v3k | k < ω } ⊂ L′

2. Let v′ be the unique point at which
∂p \ {v31} and L′

2 intersect. Now, define w to be the unique v ∈ ∂p for which d(v11, v) = d(v′, v)
and for which this distance is minimal. That is, w ∈ ∂p and sits exactly halfway between v11 and
v′. Let L be the straight line satisfying

{O,w} ⊂ L.

To see that for some M < ω we have (M · p)∩ ((M + 1) · p) ̸= ∅, assume w.l.o.g. that p is wider
than it is high. Write v11 = (x1, x2) and v41 = (y1, y2). Then M < ω is as needed if

Mx1 < (M + 1)x1 < My1 ⇐⇒ M >
x1

y1 − x1

.

To complete the proof, fix z̃ ∈ L∩ (M · p) for a sufficiently large M . Choose L1 to be the unique
line parallel to L′

1 containing z̃, and define L2 similarly. □

In the 2-dimensional case, the definition of T is best given in polar coordinates: let L1 be
the unique straight line through O with angle θ1, and define L2 and θ2 similarly. Suppose
that z̃ = (s, φ).

Definition 3.11. With z̃, L1, L2, and L given as above, define

T = { (r, θ) ∈ R2 | r ≥ s ∧ θ2 ≤ θ ≤ θ1 }.
One can think of T as the cone induced by the lines L′

1, L
′
2 shifted to z̃. Observe that z̃ ∈ T .

By construction, we may choose z̃ to not be contained in p, which we assume from now on.
Hence T ∩ p = ∅.
Lemma 3.12. With T defined as above, the following hold:

(a) T is non-empty and closed (hence in particular Borel).
(b) Lz̃ ⊂ T .
(c) T is closed under addition.
(d) The interior of T has infinite diameter: for every K < ω there exists y ∈ T such that

the open ball BK(y) of radius K and centre y is contained in T .

Proof. These are all routine. It is clear from the construction that (a) T is non-empty and closed
(it is the closure of the area bounded by L1 and L2 in the direction of (∞,∞)), and similarly (b)
is immediate. The fact (c) that T is closed under addition follows easily from the construction
of T and by using polar coordinates. Since L1 and L2 are not parallel, the interior of T must
have infinite diameter, proving (d). □

Importantly, every real in T can be expressed as a sum of generics:

Lemma 3.13. If z ∈ T then there exists a sequence of generics (x̄)n for which z =
∑

x̄.

Proof. Let z = 2x where x ∈ p \ p∗. We find x1, x2 ∈ p∗ for which z = x1 + x2. Let r < p
contain x, and let ϵ be M -generic and sufficiently small so that x1 = x + ϵ and x2 = x − ϵ are
elements of r∗. Now z = x1 + x2 as required, and it follows by induction that every z ∈ k · p (for
any k ≥ 2) can be written in the required form. Since T ⊂ p+, the lemma is proven. □

We begin to trivialise cocycles to coboundaries. As in [22], theorem 3.9 shows that the
map F : R2 → G defined by

F (x) =

{
C1(x1, . . . , xn) if x =

∑
(x̄)n ∈ T

0 otherwise

for (x̄)n ∈ p∗ is well-defined. Further, as C1 is Borel, the graph of F is clearly analytic; hence F
is a Borel function and CF is a Borel coboundary. Now define

C2(x1, x2) = C1(x1, x2) + CF (x1, x2).
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Lemma 3.14. If (x̄)n ∈ p∗ and
∑

(x̄)n ∈ T then C2(x̄) = 0.

Proof. By induction. For n = 2, it is easily seen that C2(x1, x2) = F (x1) + F (x2) = 0 by
definition of F and since T ∩ p = ∅. Thus, theorem 2.4 implies

C2(x1, . . . , xn+1) = C1(x1, . . . , xn+1) + CF (x1, . . . , xn+1)

= C1(x1, . . . , xn+1)− F (x1 + . . .+ xn+1). □

Importantly, the invariance of C2 on generics in fact extends to all of T , which follows from
the combinatorial properties of abelian cocycles.

Corollary 3.15 ([22] Lemma 55). If x, y ∈ T then C2(x, y) = 0.

Proof. Suppose x =
∑

(x̄)n and y =
∑

(ȳ)m, all generics in p (this is possible by theorem 3.13).
By the algebraic properties of C2 and the previous lemma we have

C2(x̄, ȳ)− C2(x̄)− C2(ȳ) = C2(x, y)

where all terms on the left-hand side equal 0. □

We are now ready to define the aforementioned class of families t(x).

Definition 3.16. For every x ∈ R2, let t(x) ⊂ R2 be defined by

t(x) = { y ∈ T | x+ y ∈ T }.

Lemma 3.17. Let x, x′, w ∈ R2.

(a) t(x) ̸= ∅
(b) t(x) ∩ t(x′) ̸= ∅
(c) If x, x′ ∈ T then there exist z, z′ ∈ t(x) ∩ t(x′) ∩ t(w) for which we have x+ z = x′ + z′.

Proof. For (a), let x ∈ R2 be given. If x ∈ T then x+x ∈ T , thus x ∈ t(x). Similarly, if x ∈ L\T
(with L defined as in theorem 3.10), take a sufficiently large y ∈ Lz̃ ⊂ T satisfying x + y ∈ T .
Hence suppose x ∈ R2 \ (T ∪ L). Recall that T has infinite diameter (theorem 3.12 (d)). Hence
let z ∈ T be such that B|x|+1(z) ⊂ T . Then x + z ∈ B|x|+1(z) ⊂ T . Part (b) follows easily; in
fact, the result holds for all finite intersections by a similar argument.

For part (c), let Tx = {x+ y | y ∈ T } be the shift of T to x. Since L1 and L2 (as defined in
theorem 3.10) are not parallel, it is easily seen that if x, x′ ∈ T then Tx ∩ Tx′ ̸= ∅, and in fact
also has infinite diameter. As in (a) above, let v ∈ T be such that B|w|+1(v) ⊂ Tx ∩ Tx′ . Then
any element in B|w|+1(v) can be decomposed as desired. □

Since the set T is closed by construction, the following is immediate.

Corollary 3.18. For every x ∈ R2, the set t(x) is Borel.

Define J(x) = C2(x, x̃) where x̃ ∈ t(x). By our construction, the choice of x̃ is inconsequential,
highlighting the C2-invariance on T . To see this, first recall that

C2(x, y) = C1(x, y)− F (x+ y) = C(x, y)− g̃ − F (x+ y) = C2(y, x)

since R2 and G are abelian, and since C is an abelian cocycle.

Lemma 3.19. J is well-defined and a Borel function.

Proof. By theorem 2.2,

J(x) = C2(x, x̃) = C2(x̃, x) = C2(x̃, z) + C2(x̃+ z, x)− C2(x̃+ x, z)

for every z ∈ R2. Hence if z ∈ t(x) then theorem 3.12 (c) and theorem 3.15 imply J(x) =
C2(x̃+ z, x). Now suppose x̃, x̃′ ∈ t(x), and, using theorem 3.17 (c), let z, z′ ∈ t(x)∩ t(x̃)∩ t(x̃′)
be such that x̃+ z = x̃′ + z′. Then

C2(x̃, x) = C2(x̃+ z, x) = C2(x̃
′ + z′, x) = C2(x̃

′, x).
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To see that J is Borel as a map, first note that C2 is Borel by construction. Hence it suffices
to show that the set { t(x) | x ∈ X } has a Borel choice (or uniformisation) function. To that
end, let P ⊂ (R2)2 be the relation

(x, y) ∈ P ⇐⇒ y ∈ t(x).

Clearly, P is a Borel subset of (R2)2 and, fortunately, every section Px has a canonical witness,
which we identify as follows: fix x and travel along L starting at z̃ towards the point at in-
finity (∞,∞). Then the first y ∈ Lz̃ for which a sufficiently large closed ball centred at y is
contained in T does the trick (recalling that T is closed shows that this is well-defined).

To formalise this, consider Lz̃ and define the function ρ : R2 → R2 by

ρ(x) = min
|y|

{
y ∈ Lz̃

∣∣B|x|+1(y) ⊂ T
}

where Br(x) denotes the closed ball of radius r and centre x. It follows from the properties
of T from theorem 3.12 that ρ(x) is well-defined and as desired. To see that ρ is Borel, recall
that a function is Borel if and only if the pre-image of every basic open set is Borel [23, 11.C].
Fix a condition q ⊂ R2; we show ρ−1[q] is Borel using theorem 2.1. We may assume that
q ∩ Lz̃ ̸= ∅ since otherwise ρ−1[q] = ∅. By definition of ρ we know that z̃ ̸∈ ran(ρ); hence q ∩ Lz̃

is homeomorphic to the open interval (0, 1). Let

b = (z̃ ⊕ q̃)⊕ (φ⊕ θ1 ⊕ θ2)

where q̃ codes the limit points of q ∩ Lz̃; we use this as an oracle to apply theorem 2.1. Given
x ∈ R2, first compute |x|+1. From the limit points c1, c2 ∈ Lz̃ of q∩Lz̃ (which are coded into q̃)
compute the largest radii r1, r2 such that Br1(c1) ⊂ T and Br2(c2) ⊂ T , which requires finitely-
many jumps from b (recall that |c1| < |c2|). By construction, r1 < r2, and if r1 < |x| + 1 < r2
then x ∈ ρ−1[q], which proves the result by theorem 2.1. □

To complete the proof of theorem 3.21, it suffices to show that C2 is a Borel coboundary. For
each x ∈ R2 let

x̃ = ρ(x) ∈ t(x)

which we call the canonical witness for x.

Lemma 3.20. Let x, y ∈ R2. If z ∈ t(x) ∩ t(x+ y) then z + x ∈ t(y).

Proof. By definition, z ∈ t(x) implies z+x ∈ T . Since z ∈ t(x+y) we also know that z+x+y ∈ T .
Hence z + x ∈ t(y). □

Suppose x, y ∈ R2 and choose z ∈ t(x) ∩ t(y) ∩ t(x+ y). Then

C2(x, y) = C2(x, z) + C2(x+ z, y)− C2(x+ y, z)

= C2(x, x̃) + C2(x+ z, y)− C2(x+ y, x̃+ y)

= J(x) + C2(x+ z, y)− J(x+ y).

Finally, notice that z ∈ t(x) ∩ t(x+ y) implies x+ z ∈ t(y) by theorem 3.20. Hence

C2(x+ z, y) = C2(y, x+ z) = C2(y, ỹ) = J(y)

and so C2(x, y) = CJ(x, y). Now,

CJ(x, y) = C2(x, y) = C1(x, y) + CF (x, y) = C(x, y) + CB(x, y) + CF (x, y)

and thus C(x, y) = CJ(x, y) − CB(x, y) − CF (x, y), a sum of Borel coboundaries. This suffices
by theorem 2.5. Hence we conclude:

Theorem 3.21. For every group G we have H2
Bor (R2, G) = 0.
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4. The Case N > 2

Let N > 2 and G be a group. Suppose C :
(
RN

)2 → G is an abelian Borel cocycle with
Borel code z and let M be a countable transitive model of ZFC containing z and G as elements.
As in section 2.2, we assume there exist N -dimensional conditions p = I1 × . . . × IN ⊂ RN

and q = J1 × . . . × JN satisfying that each Ii ⊂ (0,∞) (so p lies in the N -dimensional “first”
quadrant, octant, etc.) and so that there exists g̃ ∈ G for which C(x) = g̃ for every x ∈ (p× q)∗.
Further, we may of course assume D(p) < D(q) (cf. after theorem 2.8). We also stipulate that
|Ii| ̸= |Ij| for all i ̸= j, which is needed in theorem 4.2 below.

We retrace the arguments from section 3. In order to prove the theorem along our arguments
in the previous section, we need to prove higher dimensional versions of our topological lemmas.
We begin with a high-dimensional version of theorem 3.3:

Proposition 4.1. If (x̄)n, (ȳ)n ∈ p∗ and
∑

x̄ =
∑

ȳ, then C(x̄) = C(ȳ).

Proof. As before, the special case is combinatorial and hence applies: if there exists ℓ ≤ n for
which xℓ = yℓ then the lemma follows immediately. If n ∈ {2, 3}, then we are also done: if n = 2,
the combinatorial argument in [22] applies; if n = 3, then the vectors (y1−x1), (y2−x2), (y3−x3)
bound a triangle ∆. Since p is open, the same argument as in theorem 3.2 holds, considering ∆
in its induced plane inside p. Hence, assume n > 3 and that there exists no pair (i, j) for which
xi = yj. Note that the arguments in theorem 3.4 and the recursion in the proof of theorem 3.3
do not depend on the number of dimensions in the ambient space; they can be carried out
identically in RN for any N > 2. □

Recall that the results in section 3.2 are purely combinatorial, hence apply immediately in the
case N > 2. The remaining argument reduces to translating section 3.3 to N . In fact, the only
obstacle is to correctly define T ; all subsequent arguments are combinatorial.

Recall the case N = 2 and denote the set T defined in section 3 by T (2), to highlight its
topological dimension. We defined two auxiliary lines L′

1, L
′
2 which induce T (2): it is the space

bounded by L′
1, L

′
2 in the direction of the limit point (∞,∞). Note that T (2) is homeomorphic

to the closed upper half plane, which we denote by

U2 = { (x1, x2) | x2 ≥ 0 }.

For each N > 2, we define a set T (N) homeomorphic to UN , the N -dimensional closed upper
half plane given by

UN = { (x1, . . . , xN) | xN ≥ 0 }.

With the condition p ⊂ RN fixed as before, it is easily seen that there exists M < ω for which
(M ·p)∩ ((M +1) ·p) ̸= ∅ (cf. theorem 3.10). Indeed, consider p as an N -dimensional hypercube
in RN . By assumption, all 2N -many vertices of p are positive. The existence of M < ω is derived
exactly as in the two-dimensional case: the shortest side of p gives a sufficient bound for M just
as in the proof of theorem 3.10. Hence, fix such an M , and consider the induced set p+.

From now on, we write X ∼= Y to mean that X and Y are homeomorphic. The set of straight
lines containing the origin O is given by LO.

Proposition 4.2. There exists a subspace T (N) ⊂ p+ ⊂ RN , homeomorphic to UN , which
shares the properties of T (2) on R2.

Before we give the proof, we require a technical lemma. Let RM denote the N -hypercube given
by the intersection (M · p) ∩ ((M + 1) · p), and define Rk for k ≥ M similarly. We assume here
that RM is homeomorphic to DN , the closed disc of N dimensions. To define T (N), consider
auxiliary lines L′

1, L
′
2 ∈ LO which bound each Rk for k ≥ M ; we make this precise below. The

induced subspace will serve as our space T (N).
To define the relevant notions, we need the following lemma first. Denote the set of vertices

of RM by V (RM), and define V (k · p) similarly.
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Lemma 4.3. Let k ≥ M . Then V (Rk)∩V (k ·p) and V (Rk)∩V ((k+1)·p) are distinct singletons.

Proof. By shifting and shrinking, w.l.o.g., express the set V (M · p) as the set of {0, 2}-words
of length 2N , and similarly, V ((M + 1) · p) as the set of {1, 3}-words of length 2N . Now, a
vertex v ∈ V (M · p) is an element of (M + 1) · p if and only if each of its coordinates lies in the
interval [1, 3]. Clearly, only the vertex (2, 2, . . . , 2) satisfies this. By an identical argument, the
only vertex v ∈ V ((M + 1) · p) in M · p is (1, 1, . . . , 1). □

For a subset A ⊂ RN , let its interior be denoted by A◦.

Lemma 4.4. There exists a line L′ ∈ LO such that, for every k ≥ M we have R◦
k ∩ L′ ̸= ∅.

Proof. Let vk ∈ RN be as provided by theorem 4.3, where

vk ∈ V (Rk) ∩ V ((k + 1) · p).
By definition of k ·p, there exists v− ∈ V (p) for which vk = (k+1)v−. Note that vk is the vertex
of V ((k + 1) · p) closest to O. Since the set { vi | i < ω } lies on a straight line containing O,
defining L′ ∈ LO to be the unique line containing v1 suffices. □

As provided by the previous lemma, fix the straight line L that passes through every Rk.
Let BM be the N -dimensional open ball contained in R◦

M with centre on L and of maximal
radius so that ∂BM ∩ ∂RM ̸= ∅. Define a sequence (Bk)k≥M such that:

(1) ∂BM ∩ ∂RM ̸= ∅
(2) if L′ ∈ LO and L′ is tangent to BM then L′ is tangent to Bk for every k ≥ M .

Since all sides of Rk grow by a constant as k increases, a straightforward geometrical argument
shows that the latter condition can be satisfied. This also shows that

lim
k→∞

diam(Bk) = ∞.

The following corollary is now immediate.

Corollary 4.5. The sequence (Bk)k≥M induces an N-dimensional hypercone H. In particular, H
has infinite N-dimensional diameter.

Since all sides of (k + 1) · p are larger than their respective sides of Bk, we see that, once H
enters p+, it does not escape: the radius of Bk is bounded above by the shortest side length
of Rk, which is bounded above by the shortest side length of k · p. By construction, all bounds
are strict.

Proof of theorem 4.2. With p ⊂ RN fixed, consider the hyperconeH (induced by theN -sphereBM)
as given by lemmas 4.4 and 4.5. Isolate its positive filled part, defined by

x = (x1, . . . ,xN) ∈ H+ ⇐⇒
(∃L′ ∈ LO)(x ∈ L′ ∧ (∀m ≤ N)(xm ≥ 0) ∧ L′ ∩ ∂BM ̸= ∅).

It is easily seen that

∂H+ =
⋃

{L ∈ LO | |L ∩ ∂BM | = 1 }
and hence ∂H+ ∼= RN−1. And since H+ is clearly convex, it has trivial homology for every k > 0
[7, 10.8]. By taking the stereographic projection we hence see that H ∼= UN . To define T (N),
fix some z̃ ∈ L ∩ p+ (as before, we may assume z̃ ̸∈ p) and take the shift H+ + z̃ defined by

H+ + z̃ = {x+ z̃ | x ∈ H+ }.
SinceH++z̃ ⊂ p+, we define T (N) = H++z̃. The important properties of T (2) from lemma 3.12
carry over to T (N) since H+ is closed, has infinite N -dimensional diameter and T (N) ∼= UN . □

To complete the proof, note that the family
{
t(x)

∣∣x ∈ RN
}
can be defined as in theorem 3.16,

and shares the properties of theorem 3.17. The map J (as defined on RN) is Borel by the same
argument as in theorem 3.19. Since all remaining lemmas in section 3.3 are algebraic, we
conclude:
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Theorem 4.6. H2
Bor

(
RN , G

)
= 0 for every N < ω and every group G.

Proof. The case N = 1 is [22, Theorem 49]; N = 2 is theorem 3.21. The remaining cases were
covered in section 4. Hence the theorem is proved. □

5. Open Questions

In the present work we have focussed on the special cases of Borel definable group extensions
of RN by a countable group G. If G is uncountable Borel (recall theorem 1.1: G is a Borel
subset of some standard Borel space, and the group operation is a Borel function), the forcing
arguments in section 3 do not apply as Cohen forcing has the c.c.c. [17].

This obstruction is fundamental [22, p. 265]: based on an idea of Greg Hjorth, one can
construct a Borel subgroup G ≤ R and a Borel cocycle C such that C is a Borel coboundary in
H2

Bor(R,R) but not in H2
Bor(R, G)—by theorem 1.2 such a G is necessarily uncountable—which

shows that theorem 1.2 fails in general for uncountable G. (It should be noted that a similar
construction works for Cantor space 2ω [6, 21].) This leaves the following question open:

Question 5.1. What can be said about the structure of H2
Bor

(
RN , G

)
if G is Borel and un-

countable and N ≥ 2?

Contrasting the relationship of theorem 1.2 with our theorems 3.21 and 4.6, one can consider
the impact of the properties of G on H2

Bor

(
RN , G

)
for varying N and ask:

Question 5.2. For which (group-theoretic) properties P is the statement

H2
Bor(R, G) = H2

Bor(RN , G) whenever G has property P

true for all N < ω? For which properties P do both H2
Bor(R, G) and H2

Bor(RN , G) vanish for all
N < ω whenever G has property P?

For instance, in this paper we have shown that the property of “being countable” is sufficient
to answer the second part of theorem 5.2 affirmatively.

While Hjorth and Kanovei-Reeken have proven that H2
Bor(2

ω, 2ω) and H2
Bor(2

ω, G) are non-
trivial—the latter even for finite G [22, p. 265]—the following questions remain open to the
author’s knowledge.

Question 5.3. What can be said about the structure of H2
Bor(ω

ω, G) for countable (or Borel
uncountable) G? What about H2

Bor(ω
ω, ωω)?

Further, one can consider the study of definable group extensions of groups with more “ho-
mological” structure and solve the associated classification problem in the context of Borel
equivalence relations, orbits, and group actions (see [1, 13] for background). Particular cases in
this context have been studied in-depth, and various classification results have been obtained
(e.g. the preprint [26] for certain countable groups; in spirit, these are related to theorem 5.2).

However, for other spaces answers are scarce. Take for instance the p-adic integers Zp for p
prime. This ring can be expressed as the inverse limit of the sequence (Z/p,Z/p2, . . .), and is
hence Polish [14]. While progress has been made on related definability problems in terms of
homological algebra and Borel equivalence relations (e.g. [2, 3]), one can wonder about the effect
of the inverse limit construction of Zp on trivialising Borel cocycles, and whether these can be
turned into Borel coboundaries in a step-by-step argument along the limit. Further, Zp also
carries algebraic structure (it is a valuation ring, a local ring, etc.), which could be investigated
in this context. So, we ask:

Question 5.4. What can be said about the structure of H2
Bor(Zp, G) for G Borel and countable,

or otherwise?
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