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Abstract. We show that ZFC does not prove Marstrand’s Projection Theorem
in R2 for projective pointclasses beyond the analytic sets. This answer a decades-old
open question from classical geometric measure theory. Assuming V=L, we construct
co-analytic subsets of R2 which fail Marstrand’s Projection Theorem as badly as
possible (the difference between the Hausdorff dimension of the set and of that of its
orthogonal projections is maximal). We then construct counterexamples of any non-
trivial Hausdorff dimension. We use modern tools from the theory of algorithmic
randomness and descriptive set theory, including the Point-to-Set Principle and a
recursion theorem for co-analytic sets.

1. Introduction

A central goal of descriptive set theory is the characterisation of limits of provability
in ZFC. This is done via definable counterexamples: sets minimal in the projective
hierarchy which fail some property P , while every set of smaller complexity satisfies P .
The significance follows from Gödel’s Completeness Theorem: if P can consistently
fail for a set in pointclass Γ, then ZFC cannot prove P for all sets in Γ. Hence, the least
pointclass containing a definable counterexample characterises the limit of provability
of P in ZFC.

Since descriptive set theory is influenced by both classical mathematics and logic,
the construction of definable counterexamples often requires sophisticated ideas, usu-
ally from computability theory and set theory. For example, that ZFC proves the
Perfect Set Property for Σ˜ 1

1 but not for Π˜ 1
1 sets was shown by Gödel [17, 18] in his

groundbreaking work on L, 31 years after Bernstein [3] showed that some set fails the
Perfect Set Property. This difficulty highlights the strengths of the logical approach:
since virtually all mathematics can be formalised within ZFC, all classical theorems
can be recast in the language of logic. In subjects of sets of reals (e.g. topology,
analysis, geometric measure theory) descriptive set theory then proves what can—and
cannot—be proven.

In this work, we identify the limit of provability for MP, the Marstrand Property,
which is related to J. M. Marstrand’s landmark projection theorem for Hausdorff
dimension. In 1954, Marstrand [38] provedMP for all Borel sets; in 1975, P. Mattila [40]
extended the theorem to all Σ˜ 1

1 sets.
Does ZFC prove MP for all Π˜ 1

1 sets? We prove this is not so:

Theorem A. ZFC does not prove MP for all Π˜ 1
1 subsets of R2.

Therefore, MP is optimal for Σ˜ 1
1 sets.
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In our proof, we assume V=L and build Π˜ 1
1 sets failing MP by recursion. In partic-

ular, we show that the Hausdorff dimension of definable counterexamples for MP can
be arbitrary.

Theorem B (V=L). For every ϵ ∈ [0, 1] there exists a Π˜ 1
1 set Eϵ ⊂ R2 such that we

have dimH(Eϵ) = 1 + ϵ while dimH(projθ(Eϵ)) = ϵ for every θ ∈ [0, 2π).

1.1. Background. Marstrand’s Projection Theorem relates the Hausdorff di-
mension of E ⊆ R2, written dimH(E), to the Hausdorff dimension of its orthogonal
projection onto the straight line of angle θ, written dimH(projθ(E)). This can be ex-
pressed in terms of the regularity property MP (below, “almost all” means “for a set
of Lebesgue measure 1”):

Definition 1.1 (MP). A set E ⊆ R2 has the Marstrand Property MP if for almost
all θ ∈ [0, 2π):

(1) If dimH(E) ≥ 1 then dimH(projθ(E)) = 1.
(2) If dimH(E) < 1 then dimH(projθ(E)) = dimH(E).

In 1954, Marstrand [38] proved MP for all Borel subsets of R2, assuming ZFC.
Generalisations due to P. Mattila [40], who extended the result to Σ˜ 1

1 sets (and to
higher dimensions), as well as simplifications to the proof due to R. Kaufman [24] (using
energy potential characterisations) followed. The combined result of Marstrand and
Mattila ofMP forΣ˜ 1

1 sets is nowadays known asMarstrand’s Projection Theorem.

Theorem 1.2 (Marstrand’s Projection Theorem). If E ⊆ R2 is Σ˜ 1
1 then E satis-

fies MP.

A landmark result of geometric measure theory, refinements of Marstrand’s Projec-
tion Theorem—and projection theorems in general—remain an important cornerstone
of contemporary fractal geometry [2, 15, 14].

Alongside the theorems of Marstrand, Mattila, and Kaufman, constructing sets
which failed MP yielded eye-catching results, too. In 1979, R. O. Davies [10] con-
structed a set failing MP using CH. A proof analysis reveals that this set is Σ˜ 1

3.
However, whether Marstrand’s Projection Theorem holds for pointclasses beyond Σ˜ 1

1

remained open. Partial results proving sufficient conditions for MP to hold have been
isolated: the Hausdorff and packing dimension of E being equal is one such condition
which is independent of being Σ˜ 1

1 [35]. Further, using a theorem of Crone, Fishman,
and Jackson [9], D. Stull [57] also showed that every set of reals satisfies MP in ZF+
DC + AD. Since determinacy for Π˜ 1

1 sets is not provable in ZFC due to theorems of
D. Martin and L. Harrington [23, Theorems 31.4 and 31.5], the following question has
remained open:

Is it consistent with ZFC that there exists a Π˜ 1
1 set which fails MP?

We answer this question in the present paper.

Theorem A. ZFC does not prove MP for all Π˜ 1
1 subsets of R2.

As a corollary we obtain sharpness :

Corollary 4.5. Assuming ZFC, the regularity property MP is sharp for Σ˜ 1
1 subsets

of R2: ZFC proves MP for all Σ˜ 1
1 sets, but not for all Π˜ 1

1 subsets.

Taking ZFC as the basis for reasoning about classical mathematics, Corollary 4.5
shows that Marstrand’s Projection Theorem as stated in Theorem 1.2—and hence its
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Figure 1. The shaded area indicates those pointclasses of R2 for
which ZFC proves MP. The circled pointclasses contain subsets of R2

failing MP, consistently relative to ZFC.

classical proofs due to Marstrand and Mattila—are optimal: the assumption of Σ˜ 1
1-

ness cannot be strengthened. In ZFC in particular, there is no proof—classical or
otherwise—of MP for Π˜ 1

1 sets.

Our contribution in terms of provability of MP is highlighted in fig. 1, from which
optimality is evident (if ZFC is consistent). To obtain Theorem A, we assume the
set-theoretical Axiom of Constructibility V=L and explicitly construct a Π˜ 1

1 set which
fails MP. Since Theorem 1.2 proves MP for all Σ˜ 1

1 sets, this is optimal. This construc-
tion is the content of Theorem 4.1:

Theorem 4.1 (V=L). There exists a Π˜ 1
1 set E ⊂ R2 such that dimH(E) = 1

while dimH(projθ(E)) = 0 for all θ ∈ [0, 2π).

We then go one step further: we extend Theorem 4.1 and show how to construct for
any ϵ ∈ [0, 1] a Π˜ 1

1 set E such that dimH(E) = 1 + ϵ and E maximally fails MP. This
is the content of Theorem B:

Theorem B (V=L). For every ϵ ∈ [0, 1] there exists a Π˜ 1
1 set Eϵ ⊂ R2 such that we

have dimH(Eϵ) = 1 + ϵ while dimH(projθ(Eϵ)) = ϵ for every θ ∈ [0, 2π).

This maximal failure is explained as follows. Theorem B is optimal not only globally
(i.e. with respect to the complexity in the projective hierarchy) but also locally in the
following sense: in our proof, we exhibit sets which fail MP as badly as possible. For
every ϵ ∈ (0, 1) we construct a Π˜ 1

1 set Eϵ ⊂ R2 such that dimH(Eϵ) = 1 + ϵ while for
every θ we have dimH(projθ(Eϵ)) = ϵ. Hence, our set Eϵ behaves as pathologically
as possible under orthogonal projections; not only does it fail the measure-quantifier
“for almost all” in the statement of Definition 1.1, it satisfies the universal negation
instead. By classical arguments from geometric measure theory, the drop in Hausdorff
dimension from 1 + ϵ to ϵ is maximal.

The proofs of Marstrand, Mattila, and Kaufman are all classical : they solely use
tools from analysis and geometric measure theory. In contrast, we use modern tools
of computability theory to prove Theorem B. For each ϵ ∈ (0, 1), we construct a set
of reals Eϵ by recursion, using techniques from algorithmic randomness. In particular,
we employ two key tools. First, we use the point-wise characterisation of Hausdorff
dimension in terms of Kolmogorov complexity, given in its full form by J. Lutz’ and
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N. Lutz’ Point-to-Set Principle [33]. Second, we apply a recursion theorem isolated
by Z. Vidnyánszky [58] which guarantees that the set we construct recursively is Π˜ 1

1,
assuming V=L. (In particular, without the Π˜ 1

1 requirement, J. Miller observed that
our argument can be carried out assuming only CH to give a new proof of Davies’
theorem.)

1.2. Relation to Other Work. Theorems A and B were conceived during the au-
thor’s PhD thesis work [46]. The results were announced in November 2022, and a
preprint was made available shortly after [45]. Concurrently and independently, The-
orem B has also been announced by T. Slaman and D. Stull in June 2022 as “in
progress” [52]. Unfortunately, their proof has not yet appeared in writing. Their
argument seems to use properties of the lightface Π1

1 sets alongside the computability-
theoretic properties of the self-constructible reals (due to Kechris, Guaspari, and
Sacks [25, 49]) and a recursion using the Point-to-Set Principle.

Relatedly, also assuming V=L, Slaman [51] showed that the set of self-constructible
reals C1 has full Hausdorff dimension. Since C1 contains no perfect subset, his argument
yields a Π1

1 set E ⊂ 2ω which does not contain uncountable closed subsets.

1.3. The Structure of This Paper. In Section 2, we introduce geometric measure
theory, (descriptive) set theory, and computability and randomness as needed for our
arguments.

In Section 3, we prove technical lemmas and outline the techniques which we later
employ in the proofs of our main theorems. In Sections 3.1 and 3.2, we prove lemmas
relating the Hausdorff dimension of a set of reals given in Euclidean coordinates to
the Hausdorff dimension of its representation in polar coordinates. In Section 3.3, we
outline Vidnyánszky’s Π˜ 1

1-Recursion Theorem and how we use it in our constructions.
In Section 4, we prove Theorem 4.1 and our main Theorem A.
In Section 5, we give the proof of Theorem B, which produces Π˜ 1

1 counterexamples
of MP of arbitrary Hausdorff dimension between 1 and 2.

We close with section 6 where we give a few open questions which illustrate possible
avenues for follow-up research.

1.4. Acknowledgments. This work was funded by the Singapore Ministry of Edu-
cation through its research grants MOE-000538-01 and A-0008454-00-00, as well as
by a School of Mathematics and Statistics PhD Scholarship of Victoria University of
Wellington.

The author wishes to thank Daniel Turetsky for bringing the question concerning
counterexamples to Marstrand’s Projection Theorem to my attention, as well as for
his informative and continuous feedback on earlier versions of this manuscript.

2. Preliminaries

In this section, we collect necessary preliminaries on Hausdorff measure and dimen-
sion, descriptive set theory, and computability theory and algorithmic randomness.

2.1. Notation and Conventions. A real is either an element of Cantor space 2ω—
the space of all infinite binary sequences—or of R. The space of finite binary se-
quences is denoted by 2<ω. If σ ∈ 2<ω, let ℓ(σ) denote the length of σ. If σ, τ ∈ 2<ω

and ℓ(τ) < ℓ(σ) and τ(k) = σ(k) for all k ∈ dom(τ), then τ is a prefix of σ, written
as τ ≺ σ. If σ ∈ 2<ω and k < ω then σk = σ . . . σ, repeated k times. If f ∈ 2ω

and n < ω then f ↾ n = f(0) . . . f(n − 1). The natural numbers are denoted by
ω = {0, 1, 2, . . . }. If f : ω → ω is a function, then its domain is denoted by dom(f).
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Strict inclusion is denoted by ⊂, while inclusion-or-equality is denoted by ⊆. All log
are log2.

2.2. Hausdorff Measure and Dimension. Take a subset E ⊆ R2, and let d denote
the usual Euclidean metric. To define Hausdorff measure, we first consider the s-
dimensional Hausdorff outer measure of weight δ, given by

Hs
δ(E) = inf

{∑
i<ω

|Ui|s
∣∣∣∣∣ E ⊆

⋃
i<ω

Ui ∧ (∀i < ω)(|Ui| < δ)

}
where |U | = sup{d(x, y) | x, y ∈ U}, the diameter of U . As δ increases, we include
more covers in the infimum, and hence if 0 < δ < δ′ then Hs

δ′ < Hs
δ. So, as δ decreases,

the termHs
δ(E) increases. In particular, the limit limδ→0+ Hs

δ(E) always exists, though
it might be infinite.

Let E ⊆ R2. The s-dimensional Hausdorff outer measure of E is

Hs(E) = lim
δ→0+

Hs
δ(E).

The outer measure Hs is in fact a metric outer measure, and it is defined on all subsets
of R2 [41, p. 55]. We note here that for integer s and sufficiently regular E, we have
that Hs(E) equals the s-dimensional Lebesgue measure, up to a constant [41, p. 58].
Further, one can show that for every E ⊆ R2 there exists a critical value for s at
which Hs(E) drops from ∞ to 0—this is the Hausdorff dimension of E:

dimH(E) = sup{s ≥ 0 | Hs(E) = ∞}
= inf{s ≥ 0 | Hs(E) = 0}.

Although, by the Hahn-Kolmogorov-Theorem [11, p. 40], Hs is a measure only on the
class of measurable sets, every subset of R2 has a Hausdorff dimension [41, pp. 58–59].

A map f : Rm → Rm is Lipschitz with constant M > 0 if

|f(x)− f(y)| ≤ M |x− y|
for all x, y ∈ Rm, where | · | denotes the Euclidean norm on Rm. Importantly for our
arguments later on, Lipschitz maps do not increase Hausdorff dimension.

Lemma 2.1. Let E ⊆ R2. If f : R2 → R2 is Lipschitz then

dimH(f(E)) ≤ dimH(E).

As a special case, isometries fix Hausdorff dimension:

Corollary 2.2. Hausdorff dimension is preserved under rotation and translation.

2.3. (Descriptive) Set Theory. We use the hierarchies of descriptive set theory to
measure limits of provability.

Consider the Polish (i.e. separable and completely metrisable) space R endowed
with its usual topology. Since R is metrisable and Q is dense in R, there exists a
countable basis of open sets {Un |n < ω} for the topology of R. A set E ⊆ R is open
if there exists A ⊆ ω such that E =

⋃
{n ∈ A |Un}. The complement of an open set

is closed. A set is Borel if it is contained in the σ-algebra generated by the open
sets. By a classical theorem of Souslin [26, II.14.2], the Borel sets are not closed under
projections. A set A is Σ˜ 1

1, or analytic, if there exists a closed set C ⊂ R× ωω such
that x ∈ A if and only if there exists f ∈ ωω for which (x, f) ∈ C. The complement
of a Σ˜ 1

1 set is called Π˜ 1
1, or co-analytic. Sets obtained by taking projections of Π˜ 1

n

sets are called Σ˜ 1
n+1; hence, every Σ˜ 1

n set is Σ˜ 1
n+1. If a set is both Σ˜ 1

n and Π˜ 1
n then it
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is ∆˜ 1
n. A set is called projective if it is Σ˜ 1

n for some n < ω. By constructing universal
sets, one sees that this projective hierarchy does not collapse: there exists a Σ˜ 1

n+1

set which is not Σ˜ 1
n.

We will need the Axiom of Constructibility, denoted by V=L. The constructible
hierarchy is defined by recursion on the ordinals:

• L0 = ∅
• Lα+1 = {x ⊆ Lα | x is definable over (Lα,∈) with parameters}
• Lλ =

⋃
{Lβ | β < λ} if λ is a limit ordinal.

The axiom V=L now says that every set is constructible:

(∀x)(∃α)(x ∈ Lα)

It is known due to Gödel that V=L proves both the Axiom of Choice AC and the
Continuum Hypothesis CH (and even the Generalised Continuum Hypothesis) [22,
Theorems 13.18 and 13.20].

For further details on descriptive set theory, we refer the reader to the textbooks
of Y. Moschovakis and A. Kechris [44, 26]. For classical set theory, we recommend
Jech [22].

2.4. Computability and Algorithmic Randomness. We consider the theory of
computability on ω. A function f : ω → ω is partial computable (p.c.) if there
exists a Turing machine M for which, if M on input k halts in finite time, then it
outputs the value f(k). The subset of ω on which M halts is the domain of f . If the
domain of f is ω, then we call f computable. A set A ⊆ ω is m-reducible to B ⊆ ω
if there exists a computable function f such that x ∈ A if and only if f(x) ∈ B. Via
classical codings such as Gödel coding we can define computable functions on 2<ω.

We require the notion of information density, which we describe in terms of prefix-
free Kolmogorov complexity. A function f : 2<ω → 2<ω is prefix-free if when-
ever σ ∈ dom(f) and τ ≺ σ then τ ̸∈ dom(f). Let U be a universal prefix-free
machine [12, 3.5]. The machine U satisfies the following: every prefix-free p.c. func-
tion f : 2<ω → 2<ω has a program code p for which U(p, x) = f(x). The requirement
of prefix-freeness does not impose any restrictions since every p.c. function can be
made prefix-free [12, Proposition 3.5.1]. If A ∈ 2ω, let UA be the universal prefix-free
machine that has access to the oracle A (i.e., the machine can perform a step of the
type “does k belong to A?” for any k < ω, and branch accordingly). If τ ∈ 2<ω,
let U τ denote the universal prefix-free machine with τ written on an additional tape,
the condition tape.

Formalising the above we obtain:

Lemma 2.3. Let A ∈ 2ω. There exists a function hA : ω → ω such that, if p is a
prefix-free program for the prefix-free A-p.c. function f then

hA

(
0ℓ(p)1px

)
= UA(p, x) = f(x).

If τ ∈ 2<ω, define hτ similarly, using the condition tape in place of the oracle.

We now define formal notions of complexity and randomness on finite strings. These
are independently due to A. N. Kolmogorov and R. J. Solomonoff [27, 55].

Definition 2.4. Let σ ∈ 2<ω. The Kolmogorov complexity of σ is

K(σ) = min{ℓ(ρ) |h∅(ρ) = σ}.
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If τ ∈ 2<ω then the conditional Kolmogorov complexity of σ given τ is

K(σ | τ) = min{ℓ(ρ) |hτ (ρ) = σ}.

If A is an oracle, KA(σ) is defined analogously, with hA in place of h∅. In that case, the
condition tape is empty (accessing the oracle does not require any tapes), and hence
we can define KA(σ | τ) as above.

Prefix-freeness shows K is subadditive up to a constant: for σ, τ ∈ 2<ω,

K(στ) ≤ K(σ) +K(τ) + c.

Similarly, by giving a prefix-free representation of σ, some constant c:

K(σ) ≤ ℓ(σ) + 2 log(ℓ(σ)) + c.

The notion of Komogorov complexity can be carried over to infinite binary sequences.

Definition 2.5. Let f ∈ 2ω and A ⊆ ω. Then f is Kolmogorov random relative
to A (or A-random) if there is a constant c such that for all n < ω,

KA(f ↾ n) ≥ n− c.

As a result of prefix-freeness of U , A-randomness coincides with a number of other
randomness notions, highlighting its “correctness” [39, 50, 28, 7]. Via the connection
to Martin-Löf randomness, for example, one sees that the set of A-random reals has
full Lebesgue measure as a subset of 2ω. Hence:

Lemma 2.6. Let A ∈ 2ω and σ ∈ 2<ω. There is f ∈ 2ω such that σ ≺ f and f
is A-random. In particular, for every A ∈ 2ω there exists an A-random real.

As standard references for Kolmogorov complexity, we refer the reader to the books
of R. Downey and D. Hirschfeldt [12] and M. Li and P. Vitány [29]. For more on
random reals, see in particular [12, 6.2]. For classical computability, see the texts of
R. Soare [54, 53].

2.5. Coding Objects in 2<ω. We identify certain elements of 2<ω with objects in
the domain of discourse; these are usually elements of Q and elements of ω. This
identification takes place in the meta-theory; however, determining whether σ ∈ 2<ω

codes a rational or natural number is computable. We denote this string representation
using an overline: if x is an object in the domain of discourse, then x ∈ 2<ω denotes
its coded representation.

We fix a particular coding below, with concatenation the implied operation.

• If k < ω then let k be the string whose digits are the binary expansion of k.
• If n ∈ Z then let w be the binary expansion of n with each digit doubled
(e.g. n = 101 becomes w = 110011). Then let n = w01 if n ≥ 0, and otherwise
let n = w10.

• If q ∈ Q then suppose q = a/b. Then let q = ab.
• If q = (q1, . . . , qm) ∈ Qm then let q = q1 · · · qm.
• If x ∈ R, suppose k < ω, and express x in binary. Take the integer part of x
and double each digit; denote this string by w. Take the first k bits of x after
the binary point, denoted by z. If x ≥ 0, let x[k] = w01z; otherwise define
x[k] = w10z.

• If x = (x1, . . . , xm) ∈ Rm, suppose k < ω. Then x[k] = x1[k] · · · xm[k].
• If x ∈ R then let x ∈ 2ω be the limit of x[k] in the obvious fashion.
If x = (x1, . . . , xm) ∈ Rm then interweave x1, . . . , xm bit by bit.
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Using this coding, if k < ω then ℓ(k) ≤ log(k) + 1.
The distinction between strings and objects matters when we discuss elements of R

and their truncated approximations. In other cases we are more casual; e.g. we
write K(k) and K(q) instead of the formally correct K(k) and K(q).

2.6. Dimension of Points and the Point-to-Set Principle. Using effective tools
to answer measure-theoretical questions has been a research avenue for decades. This
development goes back at least to the beginning of this century, with contributions
by J. Lutz and Mayordomo [30, 42, 32]. Further discoveries were made by Hitchcock
[19, 20] and Mayordomo [42], who related the notion of effective dimension of reals
(in 2ω) to Kolmogorov complexity (the connection between martingales and Hausdorff
dimension had previously been investigated by Ryabko [47, 48], Staiger [56], and Cai
and Hartmanis [5]; gales, a generalisation of martingales, are due to Lutz [31]).

Definition 2.7. Let f ∈ 2ω and A ⊆ ω. The (effective) dimension of f relative
to A is given by

dimA(f) = lim inf
n→∞

KA(f ↾ n)
n

This notion can be naturally extended to m-dimensional Euclidean space Rm: first,
consider the complexity of a point.

Definition 2.8. Let x = (x1, . . . , xm) ∈ Rm and A ⊆ ω. The Kolmogorov com-
plexity of x at precision t < ω relative to A is given by

KA
t (x) = min{KA(q) | q ∈ Qm ∩B2−t(x)}

where Bs(y) is the open ball with respect to the Euclidean metric, with radius s and
centre y. The effective Hausdorff dimension of x relative to A is

dimA(x) = lim inf
t→∞

KA
t (x)

t
.

The characterisation of effective Hausdorff dimension of reals given in Theorem 2.8 is
due to Mayordomo [42]. We can now state Lutz’ and Lutz’ Point-to-Set Principle [33,
Thm. 1].

Theorem 2.9 (Point-to-Set Principle). Let n < ω and suppose E ⊆ Rn. Then

dimH(E) = min
A∈2ω

sup
x∈E

dimA(x).

The Point-to-Set Principle allows to control the dimension of a set by focussing on
individual points. Lutz and Lutz [33] and Lutz and Stull [35] provide outlines and
applications of the Point-to-Set Principle. Recently, the Point-to-Set Principle has
been extended to arbitrary separable metric spaces [34].

Crucial to our arguments is the following technical lemma, which allows us to work
with finite strings instead of approximating rationals. As we will be working with
elements in Cantor space 2ω whilst talking about reals in R, a convenient identification
is useful. We use the following observation by Lutz and Stull [35, p. 6].

Lemma 2.10 ([36, Corollary 2.4]). For every m < ω there exists a constant c such
that for all t < ω and x ∈ Rm we have

|Kt(x)−K(x[t])| ≤ K(t) + c.

We note an important corollary.
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Corollary 2.11. If m ≥ 1 and x ∈ Rm then dim(x) = lim infr→∞
K(x[r])

r
.

In Proposition 3.1, we prove an identification argument explicitly for polar coordi-
nates.

3. Technical Lemmas in Our Construction

3.1. Arguing in Polar Coordinates. In our constructions in both Theorems B
and 4.1, we work in polar coordinates instead of Euclidean coordinates. A point (x, y) ∈
R2 has polar coordinates (r, θ) if we have x = r cos θ and y = r sin θ. We restrict
our attention to the first quadrant of the unit disc, which we denote by

D =
{
(x, y) ∈ R2

∣∣∣x, y ≥ 0 ∧
√

x2 + y2 ≤ 1
}
.

Thus, r ∈ [0, 1] and θ ∈ [0, π/2]. Importantly, all points expressed in the proofs
below are given in Euclidean coordinates. When we write (r, θ) we do not mean the
point (r cos θ, r sin θ).

The following lemma can be considered a direct analogue to Lemma 2.10; its proof
is related to that Corollary 2.4 from [36], however requires further tools.

Proposition 3.1. Let A ∈ 2ω. Suppose (x, y) ∈ D has polar coordinates (r, θ). Then

dimA(x, y) = dimA(r, θ).

We provide proofs to both directions of Proposition 3.1 below. We use the following
lemma due to Casey and J. Lutz [6].

Lemma 3.2. There exists c < ω such that for all m, s,∆s < ω and all x ∈ Rm:

Ks(x) ≤ Ks+∆s(x) ≤ Ks(x) +K(s) + cm(∆s) + c

where

cm(∆s) = K(∆s) +m∆s+ 2 log

(⌈
1

2
log(m)

⌉
+∆s+ 3

)
+(⌈

1

2
log(m)

⌉
+ 3

)
m+K(m) + 2 log(m).

Observe that the term cm(∆s) does not depend on s.

Before give the proof of Proposition 3.1, we require the following standard result [4,
p. 151].

Lemma 3.3. Let C ⊂ R2 be convex and compact. If f : C → R2 sending (x, y)
to f(x, y) is continuously differentiable on C then it is Lipschitz on C.

The first halves of the proofs below follow the argument of Lutz and Stull [36,
Lemma 2.3]. Note that the map (r, θ) 7→ (r cos θ, r sin θ) is continuously differentiable
everywhere, and that [0, 1]× [0, π/2] is compact and convex.

Lemma 3.4 (First half of Proposition 3.1). There exists c such that if (x, y) ∈ D has
polar coordinates (r, θ) then for all s:

Ks(x, y) ≤ K(r[s]θ[s]) +K(s) + c.
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Proof. By Lemma 3.3, the map converting polar into Cartesian coordinates is Lipschitz
on [0, 1] × [0, π/2]. Thus, there exists M > 0 such that whenever (r, θ), (r′, θ′) ∈
[0, 1]× [0, π/2] then

|(r cos θ, r sin θ)− (r′ cos θ′, r′ sin θ′)| ≤ M |(r, θ)− (r′, θ′)|.(3.1)

Let (r, θ) ∈ [0, 1] × [0, π/2], and suppose that (x, y) = (r cos θ, r sin θ).
Let rs = r[s], and θs = θ[s], the truncations of r and θ to s bits after the binary point.
We consider the approximation rs cos θs of r cos θ, and similarly rs sin θs of r sin θ. Since
these need not be finite strings, we define

x[s] = (rs cos θs)[s] and y[s] = (rs sin θs)[s]

which are the truncations to s bits after the binary point. We now approximate (x, y):

Claim 1. (x[s], y[s]) ∈ B2−s(1+M
√
2)(x, y)

Proof of Claim 1. Recall that x = r cos θ and y = r sin θ. Hence,

|(x[s], y[s])− (rs cos θs, rs sin θs)| ≤ 2−s.

Using eq. (3.1) and the triangle inequality, we can compute the maximum error
as (x[s], y[s]) approximates (x, y):

|(x[s], y[s])− (x, y)| ≤ |(x[s], y[s])− (rs cos θs, rs sin θs)|+
|(rs cos θs, rs sin θs)− (x, y)|

≤ 2−s + |(rs cos θs, rs sin θs)− (r cos θ, r sin θ)|
≤ 2−s +M |(rs, θs)− (r, θ)|

≤ 2−s +M
√

(r − rs)2 + (θ − θs)2

< 2−s +M
√
(2)2−2s

= 2−s(1 +M
√
2) ⊣

Since 2−t = 2−s(1 + M
√
2) ⇐⇒ t = s − log

(
1 +M

√
2
)
, we know (x[s], y[s])

computes (x, y) at precision t = s − log(1 +M
√
2). Letting ∆t = log(1 +M

√
2), we

hence have

Ks−∆t(x, y) ≤ K(x[s], y[s]) ≤ K(x[s]y[s]) + c′

where c′ is the machine constant turning x[s] and y[s] into the real approximations x[s]
and y[s]. Since t+∆t = s, the right-hand side of Lemma 3.2 implies

Ks(x, y) ≤ Ks−∆t(x, y) +K(t) + c2(∆t) + c

≤ K(x[s]y[s]) + c′ +K(t) + c2(∆t) + c

where c2(∆t) is as in Lemma 3.2 and hence does not depend on t or s.
We require a final claim:

Claim 2. K(x[s]y[s]) ≤ K(r[s]θ[s]) + c′′ for some constant c′′.

Proof of Claim 2. By definition, rs = r[s] and θs = θ[s]. Then note
that x[s] = (rs cos θs)[s], which is computable via approximations and Taylor’s Theo-
rem, with some machine constant c′′. The same holds for y[s]. ⊣
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Combining our previous bound with the claim, we obtain

Ks(x, y) ≤ K(x[s]y[s]) + c′ +K(t) + c2(∆t) + c

≤ K(r[s]θ[s]) + c′ + c′′ +K(t) + c2(∆t) + c.

Recall that ∆t = log(1+M
√
2) is constant. Further, t = s−∆t, and thus there exists

a constant c′′′ (which only depends on ∆t and M , and not on s) for which K(t) =
K(s−∆t) ≤ K(s) + c′′′. Hence, combining constants in d,

Ks(x, y) ≤ K(r[s]θ[s]) +K(s) + d. □

For the second half, we make the following brief observation. The argument below
will focus on points in D that do not lie on the first axis; this is necessary for a
bounding argument involving Lipschitz conditions: for each point (x, y) not on the
first axis, we can find a nice neighbourhood on which the coordinate transformation
map from Euclidean to polar coordinates is nicely behaved. What about the points
on the first axis? There is nothing to do, for if x ≥ 0 then the polar coordinates and
Euclidean coordinates of the point (x, 0) coincide. Hence Proposition 3.1 holds on the
first axis trivially.

Lemma 3.5 (Second half of Proposition 3.1). There exists c such that if (x, y) ∈ D
has polar coordinates (r, θ) then there exist N(x,y),∆ such that if s > N(x,y) then

K(r[s−∆]θ[s−∆]) ≤ Ks(x, y) +K(s) + c.

Proof. First, we make an approximating observation.

Claim 1. If a ∈ Q2 ∩B2−r(x, y) then

(x[r], y[r]) ∈ B2−r(1+
√
2)(a).

Proof of Claim 1. By assumption, |(x, y) − a| < 2−r, so by the triangle inequality we
have

|(x[r], y[r])− a| ≤ |(x[r], y[r])− (x, y)|+ |(x, y)− a|

=

√
(x[r]− x)2 + (y[r]− y)2 + |(x, y)− a|

≤
√
2 (2−2r) + 2−r

≤ 2−r
√
2 + 2−r

= 2−r(1 +
√
2) ⊣

In the notation of [36], let Q2
r = {2−rz | z ∈ Z2} denote the set of r-dyadics. Note

that r-dyadics have at most r-many non-zero post-binary-point bits. We bound the
number of r-dyadics in an open ball:

Claim 2. For any a ∈ Q2 and r < ω, we have

|Q2
r ∩B2−r(1+

√
2)(a)| ≤

(
4
(
1 +

√
2
))2

.

Proof of Claim 2. Let C2 be the square centred at a with side length given by 2(1 +√
2)2−r. Since B2−r(1+

√
2) ⊂ C2, we have

|Q2
r ∩B2−r(1+

√
2)| ≤ |Q2

r ∩ C2|.
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Observe that C2 has area (2(1 +
√
2))22−2r. Now, if x, y ∈ Q2

r and x ̸= y then we
have |x−y| ≥ 2−r (since the elements inQ2

r have at most r-many non-zero post-binary-
point bits). Hence consider a small square: a square of side length 2−r. Such a small
square has area 2−2r and cannot contain more than 4 r-dyadics: one on each of its
vertices. Hence, dividing the area of C2 by the area of a small square and multiplying
by 4 for each vertex gives an upper bound for the number of r-dyadics:

|Q2
r ∩B2−r(1+

√
2)| ≤

(
2
(
1 +

√
2
))2

2−2r

2−2r
22

=
(
2
(
1 +

√
2
))2

22

=
(
4
(
1 +

√
2
))2

⊣

LetM with program P be a machine that: on input π = π1π2π3 if h(π1) = k with k <
ω, and h(π2) = s with s < ω, and h(π3) = a with a ∈ Q2, then M outputs the k-th
dyadic rational in B2−s(1+

√
2)(a). Now, if a ∈ Q2 is such that K(a) = Ks(x, y), then the

claims together imply that there exists
some k < (4(1 +

√
2))2 for which (x[s], y[s]) is the k-th element in the intersec-

tion Q2
s ∩ B2−s(1+

√
2)(a). Let π1, π2, π3 be witnesses for K(k), K(s) and K(a), re-

spectively. Then

h
(
0ℓ(P )1Pπ1π2π3

)
= x[s]y[s]

and thus

K(x[s]y[s]) ≤ ℓ(π1) + ℓ(π2) + ℓ(π2) + c

= K(k) +K(s) +Ks(x, y) + c′

≤ Ks(x, y) +K(s) + c

where K(k) can be bounded above by a constant.
Let f : R2 → R2 be the computable function mapping a point in Euclidean coor-

dinates to its polar coordinates. On D (excluding the first axis), this map is given
by

(x, y) 7→
(√

x2 + y2, tan−1(y/x)
)

and is continuously differentiable. Let ϵ > 0 such that the closed ball B of radius ϵ
centred at (x, y) does not intersect the first axis. By Lemma 3.3, f is Lipschitz on B.
Now, suppose s < ω is such that 2−s < ϵ (thus B2−s(x, y) ⊂ B), and let (p, q) ∈
Q2 ∩B2−s(x, y). Since f(x, y) = (r, θ) we have

|(r, θ)− f(p, q)| = |f(x, y)− f(p, q)|
≤ M |(x, y)− (p, q)|
≤ M2−s

= 2−(s−logM).

Thus, the machine that computes f (with machine constant c′′, by claim 2 of the
proof of Lemma 3.4) yields (x[s], y[s]), which yields the polar coordinates (r, θ) up to
precision s− logM :

K(r[s− logM ]θ[s− logM ]) ≤ K(x[s]y[s]) + c′′

≤ Ks(x, y) +K(s) + c′′ + c □
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Proof of Proposition 3.1. The proof is now a consequence of the previous two lemmas
and the following claim:

Claim 1. If ∆ < ω then |K(r[s]θ[s])−K(r[s−∆]θ[s−∆])| ≤ c for some constant c.

Proof of Claim 1. Computing r[s−∆]θ[s−∆] from r[s]θ[s] is straightforward. For the
other direction, let r(∆) be such that r[s] = r[s−∆]r(∆), and equally for θ. Suppose
that

h(π1) = r[s−∆]θ[s−∆]

h(π2) = r(∆)

h(π3) = θ(∆)

are all optimal. Let p be a program that on input π = π1π2π3, merges the two strings
obtained by π2 and π3 with the string from π1 in the obvious way (cf. Section 2.5).
Then

r[s]θ[s] = h
(
0ℓ(p)1pπ1π2π3

)
and thus optimality of programs implies

K(r[s]θ[s]) ≤ ℓ(π1) + ℓ(π2) + ℓ(π3) + c

= K(r[s−∆]θ[s−∆]) +K(r(∆)) +K(θ(∆)) + c.

Note that ℓ(r(∆)) = ∆, and recall K(σ) ≤ ℓ(σ)+2 log(ℓ(σ))+ c′ for all σ ∈ 2<ω. Since
∆ is fixed,

K(r[s]θ[s]) ≤ K(r[s−∆]θ[s−∆]) +

2ℓ(∆) + 4 log(ℓ(∆)) + c. ⊣

The claim now yields the result from the previous two lemmas: let (x, y) ∈ D with
polar coordinates (r, θ). Suppose ∆ is as in Lemma 3.5. Then

dim(r, θ) = lim inf
s→∞

Ks(r, θ)

s

= lim inf
s→∞

K(r[s]θ[s])

s

= lim inf
s→∞

K(r[s−∆]θ[s−∆])

s

= lim inf
s→∞

Ks(x, y)

s
= dim(x, y)

since K(s) ≤ log(s) + 2 log(log(s) + 1) + c for a constant c. □

Below, we pass to polar coordinates as required. In particular, the points of Π˜ 1
1 sets

we build in Theorems 4.1 and B will be determined by their radii, which we construct
explicitly.

From now on, if we write (r, θ) below, we usually mean the point with Euclidean
coordinates (r cos θ, r sin θ); in such cases, (r, θ) ∈ D. We occasionally return to Eu-
clidean coordinates, and we explicitly mention when we do so.
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Lρ

(s, ρ)

Lθ1Lθ2

ρ

Figure 2. The projections of (s, ρ) onto Lθ1 and Lθ2 are computed directly.

3.2. Projections in Polar Coordinates. We now focus on the behaviour of projec-
tions of sets onto straight lines. Consider θ ∈ [0, π], and let Lθ be the straight line
that passes through the origin at angle θ with the first coordinate axis. It is clear
that [0, π] exhausts all straight lines through the origin. Let (s, ρ) ∈ D and denote
by projθ(s, ρ) the projection of (s, ρ) onto Lθ: the unique point of intersection of Lθ

with the unique perpendicular-to-Lθ line containing (s, ρ). Recall that if (s, ρ) ∈ D
then 0 ≤ s ≤ 1 (cf. figs. 2 and 3).

There are two cases: |θ − ρ| ≤ π/2 or |θ − ρ| > π/2. If we have |θ − ρ| ≤ π/2
then | projθ(s, ρ)| = s cos(θ−ρ); otherwise, | projθ(s, ρ)| = s cos((θ+π)−ρ). Since 0 ≤
s ≤ 1 and cos(x+ π) = − cos(x), we conclude:

Lemma 3.6. For every (s, ρ) ∈ D and every θ ∈ [0, π] we have

| projθ(s, ρ)| = s|cos(θ − ρ)|.

In particular, the polar coordinates of the projection of (s, ρ) onto Lθ are

projθ(s, ρ) =

{
(s|cos(θ − ρ)|, θ) if |θ − ρ| ≤ π/2

(s|cos(θ − ρ)|, θ + π) otherwise.

Now suppose E ⊆ D and fix some θ ∈ [0, π]. Define

E(θ) = {s|cos(θ − ρ)| | (s, ρ) ∈ E} ⊂ R.(3.2)

We show below that, in fact, dimH(E(θ)) = dimH(projθ(E)).
We need the following notions: a real number x ∈ R is computable if there exists a

machine that uniformly on input k < ω outputs a rational q ∈ Q such that q ∈ B2−k(x);
this naturally extends to Rm for m ≥ 1.

Lemma 3.7. If x ∈ Rm is computable then dim(x) = 0.

Proof. Suppose M with program p is a machine that on input s for s < ω computes qs
for some qs ∈ Qm ∩ B2−s(x). Then h

(
0ℓ(p)1ps

)
= qs ∈ Qm ∩ B2−s(x) and so Ks(x) ≤

ℓ(s) + c. Recall that ℓ(s) ≤ log(s) + 1 and thus

dim(x) ≤ lim inf
s→∞

log(s) + 1 + c

s
= 0. □

Lemma 3.8. If E ⊂ R2 is countable, then dimH(E) = 0.
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Lρ

(s, ρ)

Lθ3 ρ

π − θ3
(d, θ′3)

Figure 3. For Lθ3 , the projection lies in the fourth quadrant. There,
θ′3 = π − θ3, and so d = s cos(ρ+ π − θ3) = s|cos(θ3 − ρ)|.

Proof. Suppose E = {xi | i < ω}, and let X =
⊕

xi, the infinite join. Let M with
program p be a machine with oracle to access to X that on input

(
i, s

)
computes xi[s].

Then M computes all xi, and hence by Lemma 3.7 and the Point-to-Set Principle 2.9
we have dimH(E) ≤ supx∈E dimX(x) = 0. □

Lemma 3.9. Let r ∈ R. Then for every oracle A ∈ 2ω the following hold.

(1) dimA(r) = dimA(r, 0)
(2) dimA(r) = dimA(−r)

Proof. Modulo constants, we have

K (r[s]) ≤ K
(
r[s]0[s]

)
≤ K (r[s]) +K

(
0[s]

)
.

Since 0 is computable, Lemma 3.7 implies

lim
s→∞

K
(
0[s]

)
s

= 0.

Applying lim inf yields item 1. For item 2, easily computes −r[s] from r[s]. Both
arguments relativise. □

Lemma 3.10. Let θ ∈ [0, π). If E ⊆ D then

dimH(projθ(E)) = dimH(E(θ)).

Proof. Fix θ ∈ [0, π] and suppose (s, ρ) ∈ D. For brevity, define

p(s, ρ) = | projθ(s, ρ)| = s|cos(θ − ρ)|
by Lemma 3.6. Now, item 1 of Lemma 3.9 implies

dimA(p(s, ρ)) = dimA(p(s, ρ), 0)

for every oracle A ∈ 2ω. Hence, let

Pθ(E) = {(p(s, ρ), 0) | (s, ρ) ∈ E} ⊂ R2.

Note that dimH(E(θ)) = dimH(Pθ(E)) by the Point-to-Set Principle 2.9. We now
aim to appeal to Corollary 2.2: dimH is invariant under rotations. However, ro-
tating Pθ(E) by θ anti-clockwise does not necessarily yield projθ(E): if there ex-
ists (s, ρ) ∈ E with |θ − ρ| > π/2 then projθ(s, ρ) = (p(s, ρ), θ + π), not (p(s, ρ), θ).
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Lθ1Lρ2

Lρ1(r1, θ1)

(r2, θ1)

r1
r2

Figure 4. If |ρ − θ| ≤ π/2, consider the length of the projections on
the first axis, and rotate.

Hence: whenever (s, ρ) ∈ E and |θ − ρ| > π/2, passing to Euclidean coordinates,
consider (−p(s, ρ), 0) instead. Let

p∗(s, ρ) =

{
p(s, ρ) if |θ − ρ| ≤ π/2

−p(s, ρ) otherwise.

and define P ∗
θ (E) (cf. figs. 4 and 5) in Euclidean coordinates:

P ∗
θ (E) = {(p∗(s, ρ), 0) | (s, ρ) ∈ E}

By items 1 and 2 of Lemma 3.9, it follows that

dimA(p(s, ρ), 0) = dimA(p∗(s, ρ), 0)

for all oracles A ∈ 2ω. Hence, the Point-to-Set Principle 2.9 implies

dimH(Pθ(E)) = dimH(P
∗
θ (E)).

Moreover, rotating P ∗
θ (E) by θ yields projθ(E). Hence, Corollary 2.2 implies

dimH(E(θ)) = dimH(Pθ(E))

= dimH(P
∗
θ (E))

= dimH(projθ(E)). □

We complete this section with an effective proof to a useful result in geometric
measure theory. To our knowledge, this result has not yet appeared in print.

Lemma 3.11. If E ⊆ R2 \ {0} intersects every line through the origin in D, then

dimH(E) ≥ 1.

Proof. Suppose A ∈ 2ω, and let B ∈ 2ω be A-random. Thus, θ = 0001B ∈ 2ω

codes a real number θ ∈ (0, 1). Since B is A-random, by definition of relativised
dimension, KA(B ↾ s) ≥ s − c for some constant c. As B ↾ s is easily computed
from θ[s], we have

s− c ≤ KA(B ↾ s) ≤ KA(θ[s]) + c′
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Lθ2 Lρ3

Lρ4

r3 (r3, θ2 + π)

(r4, θ2)

Figure 5. If |ρ− θ| > π/2, mirror along the second axis and then rotate by θ.

for some machine constant c′. Thus

dimA(θ) = lim inf
s→∞

KA(θ[s])

s

≥ lim inf
s→∞

KA(B ↾ s)
s

≥ lim inf
s→∞

s− c

s
= 1.

As E intersects Lθ, there exists r > 0 such that (r, θ) ∈ E. Note that we can easily
compute θ[s] from r[s]θ[s], so

KA(θ[s]) ≤ KA(r[s]θ[s]) + c′′

for some machine constant c′′. Hence,

dimA(r, θ) = lim inf
s→∞

KA(r[s]θ[s])

s

≥ lim inf
s→∞

KA(θ[s])

s

= dimA(θ) = 1.

Since A was arbitrary, the proof is complete. □

3.3. Constructing Π1
1 Sets by Recursion. To build Π˜ 1

1 sets, we use a method
originally due to Erdős, Kunen, and Mauldin [13] and A. Miller [43], and recently
generalised by Z. Vidnyánszky [58]. Assuming V=L, this Π˜ 1

1-Recursion Theorem
allows us to construct sets of reals recursively in the style of Ciesilski [8], Davies [10],
and others, with the added benefit that the constructed set is Π˜ 1

1. While the Π˜ 1
1-

Recursion Theorem is very general (it applies to all computably presentable Polish
spaces), we focus on a special case.

For notational simplicity, if X = {xα | α < ω1} we define the truncation of X
to α by X ↾ α = {xβ | β < α}.

Definition 3.12 (V=L). Let F ⊂ D≤ω × [0, π/2] × D. Then X = {xα |α < ω1} is
compatible with F if X ⊂ D and there exist:

• an enumeration {pα |α < ω1} of [0, π/2]; and
• a set {Aα |α < ω1} ⊂ D≤ω for which Aα = X ↾ α for every α < ω1
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such that (Aα, pα, xα) ∈ F for every α < ω1.

Observe that since Aα ∈ D≤ω, each Aα has order type ≤ ω.

Definition 3.13. A set X ⊂ 2ω is cofinal in the Turing degrees if it is cofinal in
the partial ordering of Turing degrees. If m ≥ 1 and X ⊂ Rm then X is cofinal in the
Turing degrees if the set {x |x ∈ X} is.

We now state the Π˜ 1
1-Recursion Theorem, which in full generality is due to

Z. Vidnyánszky [58, Thm. 1.3].

Theorem 3.14 ((V=L), The Π˜ 1
1-Recursion Theorem).

Suppose F ⊂ D≤ω × [0, π/2] × D. If F is Π˜ 1
1 and if for all (A, p) ∈ D≤ω × [0, π/2]

the section F (A, p) = {x ∈ D | F (A, p, x)} is cofinal in the Turing degrees, then there
exists a Π˜ 1

1 set compatible with F .

Theorem 3.14 proves a recursion principle: at stage α we have access to Aα (the
set of elements we have already enumerated into X) and to the current condition to
be satisfied, pα. The section F (Aα, pα) now gives the set of candidates which both
satisfy condition pα and respect Aα. Since Aα = X ↾ α, we know that X satisfies all
conditions.

In our proofs of Theorem 4.1 and of Theorem B, the set of candidates is D. Condi-
tions are straight lines through the origin, indexed by [0, π/2].

4. The Proof of Theorem A

In this section, we prove our first main result.

Theorem A. ZFC does not prove MP for all Π˜ 1
1 subsets of R2.

To prove Theorem A, we assume V=L and construct a Π˜ 1
1 set which fails MP. This

is the content of Theorem 4.1, which we prove in this section.

Theorem 4.1 (V=L). There exists a Π˜ 1
1 set E ⊂ R2 such that dimH(E) = 1

while dimH(projθ(E)) = 0 for all θ ∈ [0, 2π).

4.1. Roadmap Towards a Proof. Assume V=L. Let B = {θα |α < ω1} be an
enumeration of [0, π/2]. We argue by induction on ω1 and hence build E ⊂ D sat-
isfying Theorem 4.1 in stages; we think of the angles in B as the conditions (or
requirements) which need to be satisfied. During our construction, when consider-
ing condition φ, we also handle φ+ π/2 simultaneously. By Theorem 3.14, at stage α
we have access to all points (ri, θi) already enumerated into E. We satisfy condition θα.
Denote θ = θα, and argue thus:

(1) Let Aα = {(ri, θi) | i < ω}, the set of points already enumerated into E. For
each i < ω the angular coordinate θi tells us which conditions are already
satisfied.

(2) Build r ∈ (0, 1) such that for all i < ω:
• dim(r|cos(θ − θi)|) = 0
• dim(r|cos(θ + π/2− θi)|) = 0

This suffices by Lemma 3.10.
(3) Enumerate the pair (r, θ) into E.

Note that the set of reals in item (2) must be cofinal in the Turing degrees for the
Π˜ 1

1-Recursion Theorem 3.14 to apply. The following result is essential.
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Proposition 4.2. Suppose ai ∈ (0, 1) for all i < ω. There exists r ∈ (0, 1) such
that dim(air) = 0 for all i < ω. The set of such r is cofinal in the Turing degrees.

We prove Proposition 4.2 in Section 4.2. Having it in hand, we may already prove
Theorem 4.1. We need one more lemma.

Lemma 4.3. If A ∈ 2ω and a ∈ R, then {x ∈ R | dimA(x) = a} is Borel.

Proof. The subsequent arguments relativise. By definition,

dim(x) = lim inf
n→∞

Kn(x)

n
= lim inf

n→∞

min{K(q) | q ∈ Q ∩B2−n(x)}
n

.

Since the lim inf of a sequence of Borel functions is Borel, it suffices to show that

Kn(x) = min{K(q) | q ∈ Q ∩B2−n(x)}
is Borel. To see this, note that

Kn(x) < c ⇐⇒ ∃q ∈ Q ∩B2−n(x)(K(q) < c)

⇐⇒ x ∈
⋃

q∈K(c)

B2−n(q)

where K(c) = {p ∈ Q |K(p) < c}. Hence Kn is Borel, and so is dim. □

Proof of Theorem 4.1. To use the Π˜ 1
1-Recursion Theorem 3.14, we define the

set F ⊂ D≤ω × [0, π/2]× D by

(A,φ, (r, θ)) ∈ F if and only if
φ = θ and for all (r′, θ′) ∈ ran(A) we have

dim(r|cos(φ− θ′)|) = dim(r|cos(φ+ π/2− θ′)|) = 0.

By Lemma 4.3, F is Π˜ 1
1.

Note φ is satisfied by a point on Lφ. Let φ ∈ [0, π/2], and focus on the sections of
F : for α < ω1, by definition,

F (A,φ) = {(r, θ) | (A,φ, (r, θ)) ∈ F}.
Suppose A = {(ri, θi) | i < ω} ∈ D≤ω. Let

ai = |cos(φ− θi)| and bi = |cos (φ+ π/2− θi)| .
By construction,

(r, θ) ∈ F (A,φ) ⇐⇒ θ = φ and dim(rai) = dim(rbi) = 0 for all i < ω.

Proposition 4.2 implies that this section is cofinal in the Turing degrees. Therefore,
using Lemma 4.3, we may apply the Π˜ 1

1-Recursion Theorem 3.14: there exists a Π˜ 1
1

set
E = {(rα, θα) |α < ω1} ⊂ R2

which is compatible with F . We also have enumerations {φα |α < ω1} = [0, π/2]
and {Aα |α < ω1} such that Aα = {(ri, θi) | i < ω} = E ↾ α and for each α < ω1,

(rα, θα) ∈ F (Aα, φα).

Note that we have θα = φα.
We verify that E is as required. Let φ ∈ [0, π]. We show dimH(projφ(E)) = 0.

By Lemma 3.10, it suffices to show that dimH(E(φ)) = 0 (where we define E(φ) =
{r|cos(φ− θ)| | (r, θ) ∈ E} as in eq. (3.2)). We show this below.

Note that there exist δ < ω1 and φδ ∈ [0, π/2] such that:
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• either φ = φδ,
• or φ = φδ + π/2.

Let δ be such, and recall E = {(rα, θα) |α < ω1}. We consider the points that were
enumerated before condition φδ and those enumerated after φδ separately.

≤ δ: At condition φδ, define (analogous to Lemma 3.8) the oracle

X =
⊕{

rβ|cos(φδ − θβ)|, rβ|cos(φδ + π/2− θβ)|
∣∣∣ β ≤ δ

}
.

Then X computes both rβ|cos(φδ−θβ)| and rβ|cos(φδ+π/2−θβ)| for all β ≤ δ.
Since

φ ∈ {φδ, φδ + π/2}
Lemma 3.7 implies that for all β ≤ δ:

dimX(rβ|cos(φ− θβ)|) = 0.

> δ: We show that dim(rβ|cos(φ− θβ)|) = 0 for every β > δ. Let δ < β < ω1. Then
we have

(rβ, θβ) ∈ F (Aβ, φβ) = F (E ↾ β, φβ).

But the conditions we have already attended to at stage β are exactly the
angular coordinates of the points in E ↾ β; in particular,

E ↾ β = {(rα, φα) |α < β}.
So, for all γ < β, again by definition of F , we have

dim(rβ|cos(φγ − θβ)|) = dim(rβ|cos(φγ + π/2− θβ)|) = 0.

Since δ < β and either φ = φδ or φ = φδ + π/2, we have in particular

dim(rβ|cos(φ− θβ)|) = 0.

We picked δ < β < ω1 arbitrarily, hence this holds for all such β.

Thus, by the Point-to-Set Principle 2.9 and Lemma 3.10,

dimH(projφ(E)) = dim(E(φ))

= min
A∈2ω

sup
α<ω1

dimA(rα|cos(φ− θα)|)

≤ sup
α<ω1

dimX(rα|cos(φ− θα)|)

= 0.

Now dimH(E) ≥ 1 by Lemma 3.11. □

Finally, the fact that dimH(E) = 1 is a consequence of the following lemma.

Lemma 4.4. Suppose E ⊂ D. Then dimH(projθ(E)) ≥ dimH(E)− 1.

Proof. Suppose (r, θ) ∈ projθ(E). By Lemma 3.6, we know that r = s|cos(θ − ρ)| for
some (s, ρ) ∈ E. But now, note that, given (r, θ), we can compute s from ρ, and vice
versa. Hence suppose dim(r, θ) = ϵ. Since dim(s), dim(ρ) ≤ 1 we see that dim(s, ρ) ≤
dim(r, θ) + 1, which is as desired. □

Since the set E constructed in Theorem 4.1 is Π˜ 1
1 and fails property MP, we have

hence shown our first main theorem:

Theorem A. ZFC does not prove MP for all Π˜ 1
1 subsets of R2.

As a result, we obtain sharpness:
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Corollary 4.5. Assuming ZFC, the regularity property MP is sharp for Σ˜ 1
1 subsets

of R2: ZFC proves MP for all Σ˜ 1
1 sets, but not for all Π˜ 1

1 subsets.

4.2. Proving Proposition 4.2. To prove this technical proposition, we introduce
additional notation. An interval is called (open) dyadic if it is of the form (j/2k, (j+
1)/2k). Intervals of the form [j/2k, (j + 1)/2k] are closed dyadic. Observe that

x ∈ (j/2k, (j + 1)/2k) =⇒ |x− j/2k| ≤ 2−k.

Hence, x and j/2k agree on the first k bits in their binary expansion: both start with
the binary expansion of j.

Below, we work with open intervals in (0, 1). All reals are expressed in binary. In-
stead of manipulating intervals directly, we argue in terms of dyadic reals.
Let σ ∈ 2<ω and τ ∈ 2≤ω.

• Let τ̃ = 0.τ ∈ R.
• Let σ̃+ = 0.σ1∞ ∈ R.
• Let [σ̃] denote the open interval (σ̃, σ̃+).
• If a ∈ R then let a[σ̃] = (aσ̃, aσ̃+).

Basic facts that follow by definition are summarised below.

Lemma 4.6. Let σ, ρ ∈ 2<ω. Suppose I is dyadic.

(1) The interval [σ̃] is dyadic. If x ∈ [σ̃] then x and σ̃ agree on the initial segment
of length ℓ(σ). (We say x extends σ.)

(2) If σ̃ is the left-end point of I, then I = [σ̃].
(3) If σ̃ ∈ I, then [σ̃] ⊂ I.
(4) If ρ ∈ 2<ω then σ ≺ ρ if and only if ρ̃ ∈ [σ̃].

Lemma 4.7. Suppose σ ∈ 2<ω and a, ϵ ∈ (0, 1). There exist ρ, τ ∈ 2<ω such that
σ ≺ ρ, a[ρ̃] ⊂ [τ̃ ], and K(τ)/ℓ(τ) < ϵ.

Proof. Let σ, a and ϵ be given. Consider a[σ̃]. Since [σ̃] is open, so is a[σ̃], and thus it
contains a closed dyadic interval. Take the largest (in diameter) such interval I, and
pick τ ′ ∈ 2<ω such that τ̃ ′ is the left end-point of I. By closedness, τ̃ ′ ∈ a[σ̃]. By
standard results on Kolmogorov complexity, there exists a least s < ω such that τ =
τ ′0s satisfies

K(τ)

ℓ(τ)
< ϵ.

In particular, τ̃ ′ = τ̃ ∈ I. Now, since [τ̃ ] is open so is a−1[τ̃ ]. Let J denote the
largest closed dyadic interval contained in a−1[τ̃ ], and call its left end-point d. Again
by closedness, d ∈ a−1[τ̃ ]. Let ρ ∈ 2<ω be such that ρ̃ = d.

Now σ ≺ ρ: by construction, ρ̃ = d ∈ J ⊂ a−1[τ̃ ]. The string τ properly extends τ ′,
thus [τ̃ ] ⊂ [τ̃ ′]. Since τ̃ ′ is the left end-point of I, the interior of I equals [τ̃ ′]. Hence,
we have [τ̃ ] ⊂ [τ̃ ′] ⊂ I ⊂ a[σ̃], and so ρ̃ ∈ a−1[τ̃ ] ⊂ a−1(a[σ̃]) = [σ̃], as needed. We also
have a[ρ̃] ⊂ [τ̃ ], since [ρ̃] ⊂ J ⊂ a−1[τ̃ ]. □

To achieve cofinality in the Turing degrees when constructing r ∈ (0, 1), we code
a given oracle A ∈ 2ω into r while satisfying each condition (as per item (2) in Sec-
tion 4.1). Let

ν(k) = 22
k

determine where to code A in r. We use the intervals in ran(ν) to satisfy our conditions.
We call ν the folding map.
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Figure 6. We start on the left and argue anti-clockwise: a[σ̃] is an open
interval; the largest closed dyadic interval inside is I. Picking a suitable
τ̃ ∈ I yields a−1[τ̃ ]. The largest dyadic interval contained in it is J with
left end-point d = ρ̃. Hence, [ρ̃] ⊂ J , where in fact the interior of J
equals [ρ̃].

4.2.1. The Construction of r. Suppose (ai) is the set of conditions, where for every i <
ω we have ai ∈ (0, 1). We construct r ∈ (0, 1) in stages, by determining its binary
expansion, which is given by successive extensions x0 ≺ x1 ≺ x2 ≺ . . . with xi ∈ 2<ω.
We argue by induction on ω.

(1) Let A ∈ 2ω be given.
(2) Let x0 = ∅, the empty string.
(3) Let xk be given. At stage k + 1, decode k + 1 = ⟨i, n⟩ via Cantor’s pairing

function, for instance, and attend to requirement i. Hence we attend to each
requirement infinitely often.

(4) Apply Lemma 4.7 with a = ai and ϵ = 1
k
to obtain a suitable extension ρk ≻ xk.

(5) Let t = ν(k + 1)− ℓ(ρk)− 1 and d = A(k) and define

xk+1 =

{
ρk0

td if ℓ(ρk) < ν(k + 1)

(ρk ↾ (ν(k + 1)− 1))d otherwise.
(4.1)

Therefore, if k > 0 then ℓ(xk) = ν(k) by induction.
(6) Define x =

⋃
k<ω xk, and let r = x̃.

Note that A is computably coded in x: x(ν(k + 1)− 1) = A(k) for all k < ω. To
complete the proof of Proposition 4.2, we must ensure that the second case in eq. (4.1)
only occurs finitely often for each requirement ai. This is the content of the next
lemma.

Lemma 4.8. For each ai ∈ (0, 1) there exists Mi < ω such that if k + 1 > Mi

and k + 1 = ⟨i, n⟩ attends to requirement ai, then ℓ(ρk) < ν(k + 1).

Let (x, y) ⊆ (0, 1). We will use the following facts.

(i) Denote the diameter of (x, y) by diam((x, y)) = y − x. If σ ∈ 2<ω then
diam([σ̃]) = 2−ℓ(σ). In particular, we have − log(diam([σ̃])) = ℓ(σ).

(ii) If k < ω is such that k ≥ − log(diam((x, y))) + 2 then there exists j < ω such
that [j/2k, (j + 1)/2k] ⊂ (x, y).

Proof of Lemma 4.8. Fix ai = a and suppose we are at stage k+1 = ⟨i, n⟩. Let ρ = ρk.
Recall that ρ̃ ∈ J ⊂ a−1[τ̃ ]. Note diam(a−1[τ̃ ]) = a−12−ℓ(τ). Since J is defined to be
the maximal closed dyadic interval in a−1[τ̃ ], and since ρ̃ is the left end-point of J ,
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items (i) and (ii) and the fact that τ = τ ′0s imply

ℓ(ρ) ≤ − log(diam(a−1[τ̃ ])) + 2

= log(a)− log
(
2−ℓ(τ)

)
+ 2

= log(a) + ℓ(τ) + 2

= log(a) + ℓ(τ ′) + s+ 2.

Recall that ρ ≻ xk (so xk = σ in Lemma 4.7). By construction, τ̃ ′ ∈ I ⊂ a[x̃k], where
I is dyadic maximal in a[x̃k]. So,

ℓ(τ ′) ≤ − log(diam(a[x̃k])) + 2 = − log(a) + ℓ(xk) + 2

from which we obtain via item (5) that

ℓ(ρ) ≤ ℓ(xk) + s+ 4 = ν(k) + s+ 4.

At stage k+1, we build xk+1 ≻ xk where ℓ(xk+1) = ν(k+1). Note that our construction
is successful if we do not truncate ρ (as in the second case in eq. (4.1)). Then, we have

ℓ(ρ) < ℓ(xk+1) = ν(k + 1).

Hence, it suffices to show that we have s < ν(k + 1)− ν(k)− 4 for large enough k.

Recall that s satisfies K(τ)
ℓ(τ)

= K(τ ′0s)
ℓ(τ ′)+s

< 1
k
, and simplify:

K(τ ′0s)

ℓ(τ ′) + s
≤ K(τ ′) +K(0s) + c′

s

≤ K(τ ′)

s
+

K(s)

s
+

c′′

s

≤ ℓ(τ ′) + 2 log(ℓ(τ ′))

s
+

log(s) + 2 log(log(s) + 1)

s
+

c

s

for a sum of machine constants c. These terms are easily bounded: c
s
< 1

3k
if s > 3kc.

For the middle term, log(s) + 2 log(log(s) + 1) < 3 log(s) once s ≥ 2. Hence,

log(s) + 2 log(log(s) + 1)

s
<

3 log(s)

s
.

Since log(s)/s is monotonically decreasing, if s > 2k then

3 log(s)

s
<

3 log
(
2k
)

2k
=

3k

2k
.

Then 3k
2k

< 1
3k

if 9k2 < 2k which holds for k ≥ 10. Hence, for large enough k, the

bound s > 2k suffices. For the first term, recall that ℓ(τ ′) ≤ − log(a) + ν(k) + 2.
Since a ∈ (0, 1) we know − log(a) > 0. So, for large enough k, it follows that

ℓ(τ ′) + 2 log(ℓ(τ ′))

s
≤ − log(a) + ν(k) + 2

s
+

2 log(− log(a) + ν(k) + 2)

s

≤ − log(a) + 3ν(k)

s

Since a is fixed we have, for large enough k, that

ℓ(τ ′) + 2 log(ℓ(τ ′))

s
≤ − log(a) + 3ν(k)

s
≤ 4ν(k)

s
.
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Observe that 4ν(k)
s

≤ 1
3k

if s > 12kν(k). Choosing k large enough, we see that s >

max
{
3kc, 2k, 12kν(k)

}
suffices, which also reduces to s > 12kν(k) once k is large

enough.
Finally, 12kν(k) + 1 < ν(k + 1) − ν(k) − 4 for k ≥ 3. Thus, if k satisfies the

conditions above, then s = 12kν(k) + 1 satisfies K(τ ′0s)
s

< 1
k
while we also have s <

ν(k + 1)− ν(k)− 4. So, eventually, ℓ(ρ) is sufficiently small. □

Proof of Proposition 4.2. Fix A ∈ 2ω, and suppose (ai) is the countable sequence of
requirements. Construct x =

⋃
k<ω xk as in Section 4.2.1. Let r = x̃. From Section 2.5

and Definition 3.13, A can be computed from the binary expansion of r. Hence, we
only show that dim(air) = 0. Fix i < ω. By Lemma 4.8, there exists M such that
if k = ⟨i, n⟩ > M then ρk ≺ x. For each k, let τk be as in Lemma 4.7 alongside ρk. By
construction, ai[ρ̃k] ⊂ [τ̃k] and aiρ̃k ∈ [τ̃k]. Thus, we have air = aix̃ ∈ [τ̃k]. Further,
K(τk)/ℓ(τk) < 1/k. Letting

D = {k > M | k = ⟨i, n⟩ for some n}.

we apply Corollary 2.11 to obtain

dim(air) ≤ lim inf
k→∞, k∈D

K(air[ℓ(τk)])

ℓ(τk)

≤ lim inf
k→∞, k∈D

K(τk) + c

ℓ(τk)

≤ lim inf
k→∞, k∈D

1

k
= 0

where c is the machine constant obtaining τk from air[ℓ(τk)]. □

5. The Proof of Theorem B

In this section, we prove a significant extension of Theorem 4.1 which settles the
provability of MP in terms of the geometric measure theoretic complexity of counterex-
amples.

Theorem B. For every ϵ ∈ [0, 1] there exists a Π˜ 1
1 set Eϵ ⊂ R2 such that we

have dimH(Eϵ) = 1 + ϵ while dimH(projθ(Eϵ)) = ϵ for every θ ∈ [0, 2π).

Observe that choosing ϵ = 0 in Theorem B yields Theorem 4.1. The case ϵ = 1 is
trivial: if E ⊆ R2 satisfies dimH(E) = 2 then Lemma 4.4 implies

1 ≤ dimH(projθ(E)) ≤ 1.

for each θ. Hence, Theorem B is exhaustive and optimal.

5.1. Roadmap Towards a Proof. Let 0 < ϵ < 1. Assuming V=L, we argue as
follows.

(1) Fix an enumeration {φα |α < ω1} of [0, π/2].
(2) At stage α, let Aα = {(ri, θi) | i < ω}, the set of all points already enumerated

into our set.
(3) Let X ∈ 2ω be the sequence whose bits are made up of the binary expansion

of φα. In particular, X is φα with its first four bits removed (cf. Section 2.5).
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(4) We will not satisfy condition φα by enumerating a point on Lφα into our set.
Instead, we recover the already satisfied conditions by first coding them into
r using a suitable folding map: if (ri, θi) was enumerated into our set at stage
β, then φβ is folded into ri, and can hence be recovered computably. Let
{φi | i < ω} be the set of the conditions already satisfied.

(5) Pick θ ∈ [0, π/2] such that θ is random relative to X.
(6) Let (ai) be an enumeration of all |cos(θ − φi)| and |cos(θ + π/2− φi)|. Let Y

be the join of X and all ai. We also assume that Y computes ϵ.
(7) Construct r ∈ (0, 1) such that:

(a) the binary expansion of φα is folded computably into the binary expansion
of r;

(b) dim(rai) = ϵ for all i < ω;

(c) dimY,θ(r) = ϵ.

We will give some insight into the verification below. Let (ai) be an enumeration of
all |cos(θ − φi)| and |cos(θ + π/2− φi)|.

In our construction of a suitable r, we adapt the methods used in the proof of
Theorem 4.1. However, instead of inserting long strings of zeroes into the binary
expansions of rai, we pick a good oracle T ∈ 2ω and fold it into rai.

An oracle T is suitable if it is random relative to Y ⊕ θ (and hence all ai). Now,
assume r is constructed. Then Y (which computes all ai) computes initial segments
of T from initial segments of r: by computing an initial segment of rai for the correct i.

Since T is random relative to Y ⊕θ, we force dimY,θ(r) to not drop too low by coding T
not too sparsely.

The details can be found in Section 5.5, and the theorem then follows by Lemma 4.4.
Further, we use the following simple result, which follows from symmetry of informa-
tion.

Lemma 5.1. Let A ∈ 2ω be an oracle. For any x, y ∈ R we have

dimA(x, y) ≥ dimA(x) + dimA,x(y).

For an in-depth account of the interplay between relativised dimension and con-
ditional dimension of elements of Rn see Lutz and Lutz [33, 4.3 and 4.4], who
introduced the latter notion ibidem. The previous lemma is also a consequence of
their arguments, and a proof can be found there, too; it follows from the fact that
K(x | y) ≥ Ky(x).

Recall that Y computes X, and hence dimX(r) ≥ dimY (r) for all r. Thus,

dimX(r, θ) ≥ dimX(θ) + dimX,θ(r) ≥ dimX(θ) + dimY,θ(r) ≥ 1 + ϵ

since θ is random relative to X, and by our construction of r. The final steps of
this high-level verification are then as follows: suppose we construct E broadly as in
the proof of Theorem 4.1. By the same argument as in said proof, The Point-to-Set
Principle 2.9 implies

dimH(projθ(E)) = dimH(E(θ)) ≤ ϵ

since allowing oracles can only decrease the dimension of points. conversely, every
oracle X appears as some φα ∈ [0, π/2]. Hence, there exists (rα, θα) for which θ is
random relative to X. Since such a point exists for every oracle, the Point-to-Set
Principle 2.9 implies

dimH(E) ≥ dimX(rα, θα) ≥ dimX(θ) + dimX,θ(r) ≥ 1 + ϵ
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by Lemma 5.1. Then the conclusion follows from Lemma 4.4.

5.2. Folding Oracles Into r. Fix ϵ ∈ (0, 1), and let

Z = Y ⊕ θ

recalling that Y already computes all ai. Instead of constructing T ∈ 2ω random
relative to Z and then coding it sparsely to obtain dimension ϵ, we use a result due to
Athreya, Hitchcock, Lutz, and Mayordomo [1, Thm. 6.5]:

Lemma 5.2. Let 0 ≤ α ≤ 1. There exists x ∈ R such that

dim(x) = Dim(x) = α.

The authors obtain this real precisely by sparsely coding a random sequence, in-
terleaved with strings of zeroes. Their result relativises, and their construction shows
that one may assume that

dimZ(x) = dim(x) = ϵ.

For our purposes, letting T = x for a suitable x given by Lemma 5.2 suffices.

In the construction of Theorem 4.1 we focused on satisfying requirements: we de-
manded a particular number of consecutive zeroes to appear in the image in order
to push the complexity down sufficiently far; and in our verification, we showed that,
eventually, the gap between conditions will be sufficiently large so that enough zeroes
can be accommodated. Here, we must take more care; we must always be able to give
a good bound on the number of computable bits of T . Hence, we fix the number of
bits to be appended so that there is no “overspill”. The following lemma yields such
a bound.

Lemma 5.3. In the argument of Lemma 4.7:

s = ν(k + 1)− ν(k)− 5 =⇒ ℓ(ρk) < ν(k + 1).

Proof. This follows from the proof of Lemma 4.8: with a, ρ, τ ′ as there,

ℓ(ρk) ≤ log(a) + ℓ(τ ′) + s+ 2 ≤ ν(k) + s+ 4.

Equating this to ν(k + 1) and demanding strict inequalities yields the proof. □

In particular, if we have space for s bits, we can code s−5 bits into the image. This
leads to the following corollary:

Corollary 5.4. In the proof of Lemma 4.7, with a ∈ (0, 1): if ℓ(ρ) = m and n > m
then if s = n −m − 5 we have ℓ(ρ′) < n, where ρ′ is the extension of ρ that codes s
bits into rρ̃′.

We now choose our folding map ν to be

ν(k) = 22
k

+ k.

We introduce the shift summand k so as to make sure that the gaps between ν(k)
and ν(k + 1) have length

22
k+1

+ k + 1− 22
k − k = 22

k+1 − 22
k

+ 1

where the last bit is reserved to code a bit of φα into rai (as per item 7a). The gap
we have to extend is exactly of length

ν(k + 1)− ν(k)− 1 = 22
k+1 − 22

k

= 22
k
(
22

k − 1
)

(5.1)

which is divisible by 2(2
k−k). This fact will be useful below.
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5.3. Coding and Saving Blocks. Näıvely, our arguments ought to work as follows:
at each stage, we construct a radius r that, together with a suitable angle θ, satisfies
the active requirement. To preserve the high dimension of r (relative to Z) and of the
points rai, we code segments of T into each rai. In particular: if aj is attended to
right after ai, and the last bit of T coded into rai is T (k) for some k < ω, then the
first bit of T coded into raj at that stage is T (k+1). Hence, with a long enough initial
segment of r, the oracle Z can compute a long initial segment of T by picking the
correct ai (which Z computes), computing rai, and picking out the coded bits of T .
For ease of notation, suppose T ∈ 2ω and define

T (m,n) = ⟨T (m), T (m+ 1), . . . , T (n− 1)⟩.

In particular, observe that ℓ(T (m,n)) = n−m, and that T (n) does not appear in T (m,n).
The dimension of rai is bounded above by the dimension of T : taking a sufficiently
long initial segment rai[t] of rai, we easily find a long string of the form T (m,n) coded
into it. If ℓ(T (m,n)) = n − m is large enough compared to t, then dimension will
decrease—this requirement is ensured by choosing a sparse enough folding map.

However, it is now difficult to show that the dimension of rai does not drop properly
below the dimension of T . The problem is that it is in general hard to tell how many
bits in the multiplication of reals are determined by a single bit: e.g. if a = 1/π and
σ̃ = 0.σ for some σ ∈ 2<ω, and τ ≻ σ, there is no bound on how many bits of the
product aτ̃ are correct in the sense that every extension yields the same initial segment.

We circumvent this issue as follows: as we extend r, we save blocks of bits that
are coded into rai throughout the stage. We do this by pulling back the interval, as
seen in Lemma 4.7. Hence we define the block map µ : ω → ω by

µ(k) = 2(2
k−k).

Recall that our folding map is given by ν(k) = 22
k
+ k. Hence, at stage k with rk at

hand, we have ν(k + 1) − ν(k) many bits to extend rk. In particular, the number of
blocks fitting into the gap of stage k + 1 is given by

ξ(k) =
ν(k + 1)− ν(k)− 1

µ(k)
=

22
k
(
22

k − 1
)

2(2k−k)
= 2k

(
22

k − 1
)
.(5.2)

Note that ξ(k)µ(k) = ν(k + 1)− ν(k)− 1.
A few lemmas are needed.
Firstly, we need to have a good bound on how many bits we can code into rai at

each stage k, and in each block. And secondly, it is not clear that saving blocks does
not cost too many bits. The first is not an issue due to Corollary 5.4. We resolve the
second later in the Cost Lemma 5.5, after introducing the construction in detail.

As we code T in blocks, it is prudent to describe a suitable partitioning of T be-
forehand. By recursion, reconstruct T into segments T j

k , where k denotes the last

completed stage (so if we see T j
k then we are in stage k+1), and j the active block. At

stage k+1: (1) we code ξ(k) = 2k
(
22

k − 1
)
-many blocks, which follows from eq. (5.2);

and (2) each block of T coded into the image has length µ(k) − 5, as we lose 5 bits
each time as per Corollary 5.4. Hence,

T =
⋃

3≤k<ω

 ⋃
1≤j≤ξ(k)

T j
k


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where the union operator denotes concatenation. Hence

T = T 1
3 ∪ T 2

3 ∪ . . . ∪ T 2040
3 ∪ T 1

3 ∪ . . . T
ξ(k)
k ∪ T 1

k+1 . . .

as ξ(3) = 2040. As mentioned, we lose 5 bits each time we code a T -block, thus

ℓ(T j
k ) = µ(k)− 5 = 2(2

k−k) − 5.

An easy calculation shows that 3 is least to allow coding of bits, which is why the
outer union starts at k = 3. In particular, the first stage at which bits are coded is
stage k + 1 = 4, with ℓ(T j

3 ) = 27 and ξ(3) = 2040.

5.4. The Construction. Recall the folding map ν(k) = 22
k
+ k and the block

map µ(k) = 2(2
k−k). The radius r is now constructed as follows: suppose φα is the

next condition.

(1) Let A ∈ 2ω.
(2) Let x0 = ∅, the empty string.
(3) Let xk be given. At stage k + 1, decode k + 1 = ⟨i, n⟩; we now attend to

requirement i.
(4) We iterate over all ξ(k)-many blocks.

Let 0 ≤ j < ξ(k) = 2k(22
k − 1).

(a) Let x0
k = xk.

(b) At block j+1, xj
k is given. We apply Lemma 4.7 and code T j+1

k into aix̃
j
k.

Let ρj+1
k be the resulting extension. By filling up with s-many zeroes (via

Lemma 5.3), we find xj+1
k = ρj+1

k 0s of length

ℓ(xj
k) + µ(k) = ℓ(xk) + 2(2

k−k)(j + 1).

(5) After the last block, we have one bit left to code A or φα (this follows from

eq. (5.1)). By construction, we have ℓ
(
x
ξ(k)
k

)
= ν(k + 1)− 1; hence define

xk+1 = x
ξ(k)
k d

where

d =

{
A(k/2) if k is even

φα((k − 1)/2) if k is odd.

(6) Define x =
⋃

k<ω xk, and let r = x̃.

Observe that ℓ(xk+1) = ν(k+1), and that we code the active line into r. Further, we
code A as in Theorem 4.1 to apply the Π˜ 1

1-Recursion Theorem 3.14. This completes
the construction.

5.5. The Verification. Below, we prove that dim(rai) ≤ ϵ (Section 5.5.1); and
that dimZ(r) ≥ ϵ, where Z = Y ⊕ θ (Section 5.5.2). Then Theorem B follows from
Lemma 4.4.
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5.5.1. The Dimension of rai. Both verification arguments are “bit counting” argu-
ments: we exhibit a piece of a complicated string coded inside rai, and show that it
is long enough in a precise sense: its length dwarves the length of all non-coded bits.
Let a = ai and consider ar[m] for some m such that

ar[m] = σ ∪

 ⋃
1≤j≤ξ(k)

σjT
j
k


for some k; hence stage k+1 has just been completed. (Considering the strings at the
end of stages is prudent as we easily have access to a long consecutive segment of T ,
albeit interrupted.) We also know by Lemma 4.8 that

ℓ(σ) ≤ − log(a) + ℓ(xk) + 2 = − log(a) + ν(k) + 2.

Further, the cost of saving a block is given by a bound on the length of each σj.

Lemma 5.5 (The Cost Lemma). Let a ∈ (0, 1) and rm ∈ 2<ω. As in Lemma 4.7,
find τ̃m and Im dyadic such that [τ̃m] ⊂ Im ⊂ a[r̃m]; let τ

′
m be the left end-point of Im.

Further, let J ⊂ a−1[τ̃m] be dyadic, where ρ̃k is the left-endpoint of J . Let rm+1 = ρm0
t

so that ℓ(rm+1) = ℓ(rm)+µ(k) where k denotes the current stage. Suppose τ ′m+1 is the
left end-point of Im+1 ⊂ a[r̃m+1].

Then |ℓ(τ ′m+1)− ℓ(τm)| ≤ 7.

Before we proceed with the proof, a few comments are in order. Firstly, consulting
fig. 6 alongside the statement and proof of the above lemma is useful, as it serves as its
motivation. Conceptually, one thinks of the hypotheses as the intermediate step be-
tween moving from one block to the next within a given stage in our construction: rm is
the available string in block m inside some stage, and ρ ≻ σ is its computed extension.
Importantly, a[r̃m+1] contains τm as a substring. We ask: after saving τm in a[r̃m+1],
how many bits are lost before we begin coding the next block? In particular, if we
construct a real r by such approximations rm and we have established that

ar ≻ τmλτm+1

for some λ ∈ 2<ω by successive block saving, then how long can λ be at most?

Proof. By assumption we have [τ̃m] ⊂ Im ⊂ [r̃m], and so

diam([τ̃m]) ≤ diam(Im) ≤ diam([r̃m]).

Applying − log and by item (i) we have

− log(diam(Im)) ∈ [− log(a) + ℓ(rk), ℓ(τk)].

Since τ̃ ′k is the left end-point of Ik we also have

ℓ(τ ′m) ∈ [− log(a) + ℓ(rm), ℓ(τm)].

For a better bound, use item (ii) from page 22 to obtain

ℓ(τ ′m) ≤ − log(diam(a[r̃m])) + 2 = − log(a) + ℓ(rm) + 2

and hence

ℓ(τ ′m) ∈ [− log(a) + ℓ(rm),− log(a) + ℓ(rm) + 2].
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At stage k + 1, Corollary 5.4 implies that each block has µ(k) − 5 bits coded into
its image. Hence ℓ(τm) = ℓ(τ ′m) + (µ(k) − 5). Therefore, observing by construction
that ℓ(τ ′m+1) ≥ ℓ(τm),

ℓ(τ ′m+1)− ℓ(τm) = ℓ(τ ′m+1)− ℓ(τ ′m)− (µ(k)− 5)

≤ − log(a) + ℓ(rm+1) + 2 + log(a)− ℓ(rm)− (µ(k)− 5)

= (ℓ(rm+1)− ℓ(rm))− (µ(k)− 5) + 2

= µ(k)− (µ(k)− 5) + 2

= 7

where we use that the block size is µ(k), and hence ℓ(rm+1)− ℓ(rm) = µ(k). □

So, ℓ(σj) ≤ 7. For simplicity, we let

Tk = T 1
k ∪ . . . ∪ T

ξ(k)
k ;

hence ℓ(Tk) = ξ(k)(µ(k) − 5). The next lemma provides the final technical detail in
this half of our verification. For simplicity of notation, let

Sk =
⋃

1≤j≤ξ(k)

σjT
j
k .

Lemma 5.6. For k < ω and σ, (σj) as above, we have

|K(Tk)−K(σSk)| ≤ O(22
k

).

Proof. This is another “bit counting” argument: the number of bits by which Tk

and σSk differ is given by ℓ(σ) +
∑

j ℓ(σj). If we also know where the σj’s are located,
then we can construct each string from the other. Thus,

|K(Tk)−K(σSk)| ≤ K(σ) +
∑

1≤j≤ξ(k)

K(σj,mj)

omitting constants, where mj denotes the index at which σj begins inside Sk. We
know ℓ(σj) ≤ 7 and

ℓ(σ) ≤ − log(a) + ℓ(xk) + 2 = − log(a) + 22
k

+ k + 2.

Further,

ℓ(σSk) = ℓ(σ) +
∑

1≤j≤ξ(k)

ℓ(σj) + ℓ(Tk)

≤ − log(a) + ℓ(xk) + 2 + 7ξ(k) + ξ(k)(µ(k)− 5)

= − log(a) + ℓ(xk) + 2 + ξ(k)(µ(k) + 2)

since each of the ξ(k)-many blocks codes µ(k)− 5-many bits. Observe that

ξ(k)µ(k) = 22
k

(22
k − 1)

and hence is of order 22
k+1

. Asmj ≤ ℓ(Sk) we see thatmj is thus at most of order 22
k+1

.
But now K(mj) is at most of order 2k+1. It is now readily seen that

∑
j K(σj,mj) is

of order at most ξ(k)2k+1, which is O(22
k
). □
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Using Lemma 5.6, we now see

K(ar[m]) = K(σSk) = K(Tk) +O(22
k

).

Further, observe that ℓ(Tk) is of order 22
k+1

, since ℓ(Tk) = ξ(k)(µ(k) − 5). As be-

fore, limk→∞
22

k

22k+1 = 0, and so we may ignore terms of order at most 22
k
. So we

simplify: let D be the set of m < ω at which requirement a = ai has just been
attended (in other words, ar[m] = σSk for some k). Then, by definition of T ,

dim(ar) ≤ lim inf
m∈D

K(ar[m])

m
≤ lim inf

m∈D

K(Tk)

m
= ϵ

5.5.2. The Z-Dimension of r. Recall that Z = Y ⊕ θ and that Y computes all ai. As
we must show dimZ(r) ≥ ϵ, it does not suffice to exhibit a set of favourable elements,
such as our set D above. Instead, we show how to decode enough elements of T from
any initial segment of r. Suppose we are at stage k+2 and n blocks have already been
satisfied. Write

r[m] = σ1 · · · σk+1b1 · · · bnτ
where

• σi denotes the initial segment of r that satisfied stage i;
• bj denotes the substring of r that satisfied block j of stage k + 2; and
• τ is the initial segment satisfying block n+ 1.

At stage k + 1, the substring Tk has been coded into ar. Hence, using the oracle Z
which computes all ai, we can recover Tk from ar. Recall that

ℓ(Tk) = ξ(k)(µ(k)− 5).

Observe that since limk→∞
22

k

22k+1 = limk→∞
1
2k

= 0, the length of Tk already dwarves

the lengths of T1 + . . . + Tk−1; hence, it suffices to compute the blocks saved at stage
k + 1.

The worst case to consider above is the case n = 0: then, the initial segment σk+1

needs to carry enough information to survive against τ , where we have ℓ(τ) ≤ µ(k +
1)− 1. This is not an issue, since ℓ(Tk) = ξ(k)(µ(k)− 5) and

lim
k→∞

µ(k + 1)− 1

ξ(k)(µ(k)− 5)
= 0.

Hence, the information provided in Tk dwarves the unfinished block τ . It now suffices
to show that Tk and the completely coded substrings T 1

k+1, . . . , T
n
k+1 can be recovered

from ar[m]. This follows from the argument of Lemma 5.6:

• Take a machine that trims r to length ν(k + 1) − 1, and denote the resultant
string by ρ (this is where stage k + 1 has just been completed).

• Compute the projection factor ai = a for stage k + 1 using Z (and from the
Cantor pairing function).

• Compute the largest dyadic interval in a[ρ̃], and let d denote its left end-point.
Now, we have d = σSkσ

′ where ℓ(σ′) ≤ 7, by the Cost Lemma 5.5.

By Lemma 5.6, the complexity of isolating Tk from σSkσ
′ is not significant, as

required. An identical argument recovers the n blocks. It also follows from Lemma 5.6
that

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1) ≤ KZ(r[m]) +O(22
k

) +O(n2k+2)
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where n < ξ(k + 1). Thus, in particular

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)

m
≤ KZ(r[m])

m
+

O(22
k
) +O(n2k+2)

m
(5.3)

where m = ν(k + 1) + nµ(k + 1) + ℓ(τ) and n < ξ(k + 1). Next, we verify that the
length of T computed on the left-hand side of eq. (5.3) is sufficiently long: note that

|m− ℓ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)| = ℓ(τ) + ν(k) + 5ξ(k) + 5n+ 1.

Now, m = ν(k + 1) + nµ(k + 1) + ℓ(τ) and n < ξ(k + 1) imply

ℓ(τ) + ν(k) + 5ξ(k) + 5n

m
≤ ℓ(τ) + ν(k) + 5(ξ(k) + ξ(k + 1))

ℓ(τ) + ν(k + 1) + ξ(k + 1)µ(k + 1)
.

Applying limits as k goes to infinity shows that the term vanishes. Applying lim inf
to both sides of eq. (5.3) yields

lim inf
k→∞

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)

m
= ϵ.

Finally, since m is of order ν(k + 1) + nµ(k + 1), i.e. of order at least 22
k+1

, the
right-hand side of eq. (5.3) simplifies to its first term. Hence

ϵ = lim inf
k→∞

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)

m
≤ KZ(r[m]

m
= dimZ(r).

Theorem B now follows from the same arguments as in Theorem 4.1, and the overview
given at the start of this section.

6. Open Questions

We list open question for future investigation.
By a theorem of P. Mattila [40], Marstrand’s Projection Theorem can be extended

to higher dimensions in Euclidean space. Whether the optimal dimension requirements
of Theorem B can be obtained via similar means in those higher dimensional settings
remains open.

Question 1. Does Theorem B hold in higher dimensions?

The Π˜ 1
1-Recursion Theorem 3.14 produces a Π˜ 1

1 set of self-constructible reals satis-
fying the recursion. It is well-known that the set of self-constructibles is the largest
thin Π1

1 set: it contains no perfect subset [25, 37]. As has been pointed out by
Vidnyánszky [58, Problem 5.8], whether non-thin sets can solve the recursion in theΠ˜ 1

1-
Recursion Theorem remains open.

Question 2. Does there exist a Π˜ 1
1 set failing Marstrand’s Projection Theorem which

also contains a perfect subset, under suitable set-theoretic assumptions?

Secondly, we considered the propertyMP from the viewpoint of Hausdorff dimension.
There also exists a characterisation of packing dimension in terms of Kolmogorov
complexity, which is due to J. Lutz and N. Lutz [33, Theorem 2].

Theorem 6.1. Let n < ω and E ⊆ Rn. Then

dimP (E) = min
A∈2ω

sup
x∈E

DimA(x)

where Dim denotes the upper effective dimension:

Dim(x) = lim sup
r→∞

K(x[r])

r
.
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There exist bounds on the projection of subsets under dimP . However, these are less
well-behaved; the best possible lower bound for Σ˜ 1

1 sets was isolated by J. Howroyd
and K. Falconer [16], improving on M. Järvenpää’s result [21].

Question 3. What packing dimensions can be realised in projections of sets of reals?

In this paper, we have constructed sets of Hausdorff dimension greater than or
equal to 1. We leave open whether a Π˜ 1

1 set of Hausdorff dimension ϵ ∈ (0, 1) can be
constructed which also fails MP.

Question 4. Is there a Π˜ 1
1 set E ⊂ R2 and ϵ ∈ (0, 1) for which dimH(E) = ϵ

while dimH(projθ(E)) = 0 for all angles θ?

Finally, on the complexity side, a possible strengthening of Theorem B ensures that
the witnessing set is not only Π˜ 1

1 but even Borel or Wadge complete [26, II.22.B
and III.26].

Question 5. Can MP be failed by a Borel (or even Wadge) complete Π˜ 1
1 set?
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