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Abstract

The relations between many-one degrees and one-one degrees have been studied since the be-
ginning of recursion theory; early results from the 1960s include that many-one degrees always
have a largest one-one degree and that one-one degree is either the only one-one degree inside
the many-one degree or every countable linear order is noneffectively embeddable into the struc-
ture of one-one degrees inside the given many-one degree. Furthermore, the greatest recursive
many-one degree is a special case, as it allows to embed ascending infinite chains but not de-
scending infinite chains, all other many-one degrees fall into the two cases mentioned above. It
remained open whether infinite antichains can always be embedded when the many-one degree
is nonrecursive and infinite; Odifreddi stated in his survey from the year 1981 and in his book
Classical Recursion Theory in the year 1989 this question explicitly as an open problem. Dëgtev
had already in 1976 constructed antichains of one-one degrees inside all nonrecursive and non-
irreducible recursively enumerable many-one degrees and Batyrshin generalised the result to all
nonrecursive and nonirreducible limit-recursive many-one degrees. The present work generalises
Batyrshin’s result to all nonrecursive and nonirreducible many-one degrees and solves therefore
Odifreddi’s open problem.

The present work first proposes also to consider reducibilities between one-one and many-
one, namely to study in more detail than before the finite-one and bounded finite-one degrees.
Odifreddi’s Open Problem is solved by showing that every nonrecursive finite-one degree which
does not coincide with the greatest one-one degree in a many-one degree contains an infinite
antichain of one-one degrees and furthermore allows to embed any recursive partial order effec-
tively into the structure of one-one degrees inside the finite-one degree. This is done by starting
with a representative A of the finite-one degree and then constructing an array B0, B1, B2, . . . of
sets given by finite-one reductions to A which are also all one-one above A and which form an
antichain or embed a given recursive partial order. In contrast to this, there are nonrecursive
bounded finite-one degrees consisting of a linearly ordered set of one-one degrees without any
incomparable pair of one-one degrees inside it. Furthermore, some initial results about the struc-
ture of finite-one degrees inside many-one degrees are obtained, some of those using relativisations
of finite-one equivalence to oracles.

Keywords and phrases Structures inside degrees; one-one degree; finite-one degree; bounded

finite-one degree; many-one degree; infinite antichains.
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1 Introduction

Post [23] investigated in his paper the classical reducibilities many-one, truth-table and Tur-
ing in order to determine which of them had intermediate recursively enumerable degrees
besides the recursive degree and the degree of the halting problem; he answered it positively
for all strong degrees, but left it open for Turing reducibility. The strongest form of re-
ducibility are the many-one reducibility and their variants. Here f reduces A to B iff for all
x, x ∈ A ⇔ f(x) ∈ B; the variants satisfy the additional request that f is one-one or finite-
one. In all cases, for recursion theory, f has to be a recursive function. The work initiated
by Post led to a comprehensive body of research comparing and relating strong reducibilities
and their degrees. Odifreddi surveyed in an article [20] and in his books “Classical Recur-
sion Theory” [21, 22] also the structure of one-one degrees inside many-one degrees; the first
book concentrated on general degrees while the second book specialised at limit-recursive
and recursively enumerable degrees.

Young [31] showed in 1966 that there are two base-cases for many-one degrees, either
they consist of a single one-one degree or they consist of infinitely many one-one degrees.
For example, the many-one degree of the empty set or of the full set of natural numbers N

consist of a single set and thus a single one-one degree. Myhill [17] had shown already in
1955 that the many-one degree of the halting problem consists of sets which are pairwise
equivalent by a recursive bijection [17], thus the many-one degree of the halting problem
is a single one-one degree; such many-one degrees are called irreducible. On the other
hand, simple sets as introduced by Post [23] satisfy that their many-one degree consists
of infinitely many one-one degrees. Young [31] furthermore showed that the recursive and
nonrecursive nonirreducible many-one degrees differ. While the greatest recursive many-one
degree allows only to embed linear orders isomorphic to either a finite ordering or to the
natural numbers with their default ordering or to the natural numbers with their default
ordering plus one element above them, every nonrecursive nonirreducible many-one degree
allows to embed any countable linear order into the structure of one-one degrees which it
contains. In particular the dense linear order is embeddable into the one-one degrees inside
any given nonirreducible nonrecursive many-one degree. Young worked also on other aspects
of many-one and one-one degrees [29, 30].

Rogers [24] showed that every many-one degree contains a greatest one-one degree and
this one-one degrees consists of all the cylinders in the many-one degree. Here, a cylinder is
a set A which is one-one equivalent to the Cartesian product of A with the set of the natural
numbers. Dekker and Myhill [6] showed that there are many-one degrees without a least
one-one degree, examples of these are the many-one degrees of simple sets. Furthermore,
the greatest recursive many-one degree has two minimal one-one degrees, the singleton
sets and their complements; this degree indeed contains antichains of length 2 but not of
length 3. One of the corollaries to the results in the present work is that this degree is
also the only many-one degree with this property. Motivated by Young’s result on the
embeddability of countable linear orders, which did not include an embeddability result
for countable partial orders, Dëgtev [7] showed that recursively enumerable nonrecursive
and nonirreducible many-one degrees can embed countable partial orders including infinite
antichains into the structure of one-one degrees inside them.

This motivated Odifreddi [20, Open Problem 5] to ask explicitly whether every nonrecur-
sive and nonirreducible manyone degree contains an infinite antichain of one-one degrees.
Batyrshin [1] confirmed this for limit-recursive many-one degrees. Here a limit-recursive
set is a set Turing reducible to the halting problem K. The main result of this paper is
to generalise this result to all many-one degrees, thus answering Odifreddi’s question from
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1981 affirmatively.

Furthermore, the present work analyses the situation when taking the intermediate finite-
one degrees between the one-one degrees and many-one degrees into account. A published
reference to the use of finite-one reducibility is by Kjos-Hanssen and Webb [13]; they used it
as a tool to study various forms of randomness. Finite-one reducibility is the most natural
candidate to sit between one-one and many-one reducibility.

The following is now known about finite-one degrees inside many-one degrees: A finite-
one degree containing the greatest finite-one degree inside its many-one degree is irreducible
and consists exactly of this one-one degree. All other nonrecursive finite-one degrees contain
infinite antichains of bounded finite-one degrees. Those in turn might or might not contain
antichains of one-one degrees, there are infinitely many bounded finite-one degrees whose
one-one degrees inside them are order-isomorphic to the natural numbers with their default
order. The collection of recursive sets consists of five finite-one degrees which all consist of
a single bounded finite-one degree and out of which three are a single one-one degree and
two are ascending chains of one-one degrees.

The interested reader finds, besides the information provided in the textbooks of Odi-
freddi [21, 22] and his survey article [20], also further background on strong reducibilities and
recursion theory in general in other recursion-theoretic textbooks like those of Calude [3],
Chong and Yu [5], Downey and Hirschfeldt [11], Li and Vitányi [18], Nies [19], Rogers [24]
and Soare [27].

2 One-one degrees inside finite-one degrees

The three main reducibilities studied in the present work are many-one, one-one and finite-
one; these type of reducibilities had been used by Post [23], Myhill [17] and Kjos-Hanssen
and Webb [13], respectively. Reducibilities are a core concept of recursion theory and Post
[23] studied them in order to get initial results towards his question whether there are
recursively enumerable Turing degrees which are neither recursive nor complete (= Turing
equivalent to the halting problem). The distinction between one-one, finite-one and many-
one functions was already studied for centuries in other branches of mathematics, with
one-one and many-one being the most common types. Finite-one functions were explicitly
used in the construction of the Rudin-Blass ordering between ultrafilters in set theory, see
Laflamme and Zhu [15] for an important paper on that notion; this reducibility is not really
a finite-one reducibility itself, but it uses finite-one functions between the spaces on which
the ultrafilters are build as part of its definition. Sets A, B, . . . used in this paper are subsets
of the natural numbers N = {0, 1, 2, . . .} and sets are identified with their characteristic
functions, so if x ∈ A then A(x) = 1 else A(x) = 0.

◮ Definition 1. A function f is a many-one reduction from A to B iff f is recursive and for
all x, A(x) = B(f(x)). Furthermore, a many-one reduction f is a finite-one reduction if
for each y there are at most finitely many x with f(x) = y and a one-one reduction if for
each y there is at most one x with f(x) = y. Between these two reductions is the bounded
finite-one reduction where there is a constant c such that for every y there are at most c

numbers x with f(x) = y. Furthermore, let X ⊕ Y = {2z : z ∈ X} ∪ {2z + 1 : z ∈ Y } be
the join of X and Y . Now X, Y are both one-one reducible to their join. The many-one
degree of A is the set of all B such that first B is many-one reducible to A and second A

is many-one reducible to B; finite-one, bounded finite-one and one-one degrees are defined
analogously.
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◮ Theorem 2. Let A be an infinite and coinfinite subset of the natural numbers. Then one

can construct an array B0, B1, . . . of sets finite-one equivalent to A such that each of them

is one-one above A and either the B1, B2, . . . forms an antichain in the one-one degrees or

A is in the greatest one-one degree in its many-one degree and all Bk are one-one equivalent

to A.

Proof. One defines each set Bi via a surjective finite-one reduction hi from natural numbers
to natural numbers where Bi(x) = A(hi(x)). By construction, every Bi is finite-one reducible
to A and, by surjectivity, A is one-one reducible to every Bi. The functions hi are constructed
in stages and implicitly define Bi as indicated above; the main constraint is that each y has
at least one and at most finitely many preimages x. The overall quantity and positions of
these preimages is controlled by a finite injury construction. Furthermore, one let ϕ1, ϕ2, . . .

be a numbering of all partial-recursive functions which are one-one on their domain and
which satisfy that whenever ϕe(x) is undefined so is ϕe(x + 1). Note that for each one-one
reduction between two sets, one can find a ϕe in this list which coincides with this one-one
reduction. Now one defines the following requirements Re,i,j :

1. R0,0,0: This requirement makes sure that for each y, i there is an x such that hi(x) = y

and that each hi(x) is eventually defined.

2. Re,i,j with e > 0 and i 6= j: This requirement makes sure that whenever ϕe is a one-one
reduction from Bi to Bj then a finite variant of a strictly increasing selfreduction from
A to A is constructed - thus such a selfreduction exists and A is a cylinder, that is, the
finite-one degree of A consists of a single one-one degree which is the largest one-one
degree in the many-one degree of A.

For this, one assumes a default enumeration of all requirements with R0,0,0 coming first and
Re,i,j does not come strictly before Re′,i′,j′ when e′ ≤ e ∧ i′ ≤ i ∧ j′ ≤ j. Let g(Re,i,j)
be the natural number assigned to the requirement Re,i,j and assume that g is a recursive
bijection. In other word, if d = g(Re,i,j) then Re,i,j is the d-th requirement with R0,0,0 being
the zeroth requirement.

◮ Algorithm 3. The algorithm to construct the array runs in stages. Each stage takes so
long until all the requirements in it have done the actions linked to it or are skipped due to
not requiring any current action.

At stage s, one first satisfies the requirement R0,0,0:
While there are i, y ≤ s such that there is no x on which hi(x) is already defined to be

y then take the first x where hi(x) is not yet defined and let hi(x) = y. Furthermore, while
there are x, i ≤ s with hi(x) being undefined, let hi(x) = y for the first y not yet in the
range of hi.

Now, one looks for d = 1, 2, . . . , s at that requirement Re,i,j which satisfies g(Re,i,j) = d:
If the marker me,i,j is currently not sitting on some number then do the following: Define

the set D = {y : d ≤ y ≤ s and fd(y) is not already defined and none of the markers for
requirements Re′,i′,j′ with 0 < g(Re′,i′,j′) < d is sitting on y}; if D is not empty then place
me,i,j on the minimum of D and remove all other markers sitting there (they have lower
priority).

If now the marker is sitting on a number y and fd(y) is not yet defined then one does
the following steps.

While the number of x with hi(x) = y is less or equal to the number of x′ with hj(x′) ≤ y

do begin select the least x where hi(x) is not yet defined and let hi(x) = y end.
If ϕe(x) is defined on all x where currently hi(x) = y within s steps then one finds an x

with hi(x) = y and either hj(ϕe(x)) is not yet defined or hj(ϕe(x)) > y; fix this x for now.
If hj(ϕe(x)) is not yet defined then one defines hj(ϕe(x)) = y′ for the first y′ > y which is
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not yet in the range of hj , so that from now on the second subcase hj(ϕe(x)) > y holds.
Now one defines that fd(y) = hj(ϕe(x)).

Now one concludes the step by removing the marker me,i,j from its position if fd(y) has
been defined. The marker remains on its position if the marker is waiting for future stages
until all ϕe(x) with hi(x) = y become defined.

End of activity for Re,i,j inside stage s.
Once all requirements Re,i,j with g(Re,i,j) ≤ d are handled, this is the end of stage s and

the algorithm goes to stage s + 1.

Recall that Bi(x) = A(hi(x)) for all i, x. Thus every Bi is many-one equivalent to A via
hi. Theorem 2 will now be proven by a series of four claims showing important properties
of the array of sets constructed with Algorithm 3; note that A is a parameter, but it is only
evaluated at one point: To make a finite modification of some function fd to show that A

is a cylinder in the case that the Bi do not form an antichain of one-one degrees inside the
finite-one degree of A.

◮ Claim 4. At every stage, all hi have a finite domain and overall only finitely many new
values of the functions fi are defined in a stage.

To see this claim, assume by way of contradiction that this would be false and let s be the
first stage where for infinitely many pairs a value hi(x) is newly defined. Furthermore, there
must be a first requirement with respect to the requirement number d = g(Re,i,j) for which
this happens. It cannot be that d = 0 as that requirement defines at most for each (i, y)
with i, y ≤ s one value hi(x) = y and furthermore for each (i, x) with i, x ≤ s at most one
further value. This are at most 2 · (s+ 1)2 many definitions and thus only finitely many. For
d > 0, there are only two definition steps inside the activity. The substep

“While the number of x with hi(x) = y is less or equal to the number of x′ with
hj(x′) ≤ y do begin select the least x where hi(x) is not yet defined and let hi(x) = y

end.”

defines only finitely many values hi(x) as by assumption there are only finitely many value
hj(x) defined before. Furthermore, there is in this step at most one further point where a
value is defined and that is defining hj(x) = y′ for some value y′ > s. Thus in contrary to
the assumption, only finitely many new definitions are done in this step. Therefore also at
most finitely many new definitions are done in stage s.

◮ Claim 5. For all i, y there are at least one and at most finitely many x with hi(x) = y. In
particular each Bi is finite-one equivalent to A and A is one-one reducible to each Bi.

Note that R0,0,0 enforces that for each pair (i, y) there is at least one x with hi(x) = y and
that therefore all functions hi are surjective. Thus one has only to show that the overall
number is finite. By the first verification item, this can only happen if some marker sits
forever on a value y for a requirement Re,i,j . So let y be the least number so that there are
infinitely many x with hi(x) = y for one single i. Furthermore, this can only be caused by
finitely many requirements, as requirements Re,i,j with g(Re,i,j) > y do not define hi on any
x to have the value y. In addition all the requirements together who act at markers strictly
below y can only define hi(x) for the first x which takes the value y but not for further
ones, thus these markers cannot cause the problem. So it must be one requirement Re,i,j

whose marker settles on y forever. Let s be so large that all requirements which define some
value hj(x′) = y′ for some y′ < y have already done so, by choice of y there are only finitely
many; furthermore, s is so large such that there is at least one x with hj(x) = 0 already
being defined. Furthermore the marker me,i,j sits from stage s onwards forever on y, and
the markers of the higher priority requirements are either sitting on values strictly above y
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forever or they have converged to a lower value and will not be moved again. Thus, no other
marker makes new definitions of the form hj(x′) = y′ for some y′ ≤ y from now on. Let t be
the number of x with hj(x) ≤ y, this number is thus constant. It follows by the way that
the activity related to requirement Re,i,j is defined that there are at most t + 1 many values
x for which the requirement defines hi(x) = y, thus there are only finitely many and not
infinitely many. So the assumption was false and it follows from contraposition that each
Bi is indeed finite-one equivalent to A via the mapping hi.

◮ Claim 6. Assume that ϕe one-one reduces Bi to Bj and d = g(Re,i,j). Now fd is defined
on almost all inputs and for all y in its domain, fd satisfies A(y) = A(fd(y)) and fd(y) > y.

To see this claim, consider any y in the domain of fd. Then fd(y) = hj(ϕe(x)) for some
x with hi(x) = y and hj(ϕe(x)) > y. Thus fd(y) > y. Furthermore, Bi(x) = A(hi(x))
by definition and Bj(ϕe(x)) = A(y) by the assumed correctness of ϕe and the equality-
chain A(fd(y)) = A(hj(ϕe(x))) = Bj(ϕe(x)) = Bi(x) = A(y) shows that A is a partial
selfreduction on A.

Now assume that y /∈ dom(fd) and y ≥ d. There are only finitely many values on which
a marker of a higher priority requirement stays forever, so assume that y is not one of them.
One possibility is now that the marker me,i,j itself stays forever on y. Then there is some
stage s large enough such that all x with hi(x) ≤ y or hj(x) ≤ y are already defined and
ϕe(x) is defined for all x with hi(x) = y and me,i,j is sitting on y. Then it must be that
there are more x with hi(x) = y than x with hj(x) ≤ y, otherwise hi(x) = y would become
defined for some further x in the future; as this does not happen, this must already have
been defined before. Now there must be an x such that hi(x) = y and hj(ϕe(x)) is either
undefined or strictly above y; however, this would force in this stage the value of fd(y) to
become defined. As by assumption this does not happen, it cannot be that the marker me,i,j

sits on some y forever. Furthermore, it cannot be that the y is overlooked, that is, from some
time point onwards, for all further stages, none of the markers associated to a requirement
Re′,i′,j′ with g(Re′,i′,j′) ≤ d sits on y. Without loss of generality, y is the least one of the
numbers greater equal to d for which fd(y) is undefined and to which none of the markers
me′,i′,j′ with g(Re′,i′,j′) ≤ d converges. Then y would for almost all stages qualify as the
value on which me,i,j will take and thus, in contrary to the assumption, fd(y) gets defined.
This completes the proof that the domain of fd is cofinite.

◮ Claim 7. If ϕe is a one-one reduction from Bi to Bj then A is a cylinder, that is, in the
greatest one-one degree of its many-one degree. Furthermore, if A is infinite, coinfinite and
not a cylinder, then B0, B1, . . . is an antichain inside the finite-one degree of A.

By the above, fd is defined for almost all y. One makes it total by mapping all remaining
y to the first y′ > y with A(y′) = A(y). Now let fd,0(x) = x and fd,k+1(x) = fd(fd,k(x))
for all k. Using the functions fd,k one can, given a many-one reduction f ′ from some set
C to A, one can also obtain a one-one reduction f ′′ by defining for x = 0, 1, . . . the value
f ′′(x) = fd,k(f ′(x)) for the first k where fd,k(f ′(x)) /∈ {f ′′(x′) : x′ < x}. This proves that
C is one-one reducible to A and thus A is in the greatest one-one degree of its many-one
degree.

If now A is infinite and coinfinite and not a cylinder, then no fd can be finitely extended
to a total strictly increasing selfreduction of A, thus either fd is not a partial selfreduction
or its domain is coinfinite. This happens only if the corresponding ϕe is not a one-one
reduction from Bi to Bj . Thus for the array of the Bi constructed, there exist no distinct
indices i, j and no one-one reduction ϕe such that ϕe reduces Bi to Bj . So B0, B1, . . . is an
antichain in the one-one degrees, the property that all Bi are strictly one-one above A but
still finite-one equivalent to A follows from the construction. ◭
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Theorem 2 can be improved to the following Theorem 8. For this, let ⊏ be a recursive
partial order, that is, a relation which is transitive and which satisfies for all distinct i, j

that either (a) i ⊏ j or (b) j ⊏ i or (c) i, j are incomparable; note that the case i ⊏ j ∧ j ⊏ i

does not occur. An algorithm can compute for each pair of distinct i, j which of the above
three cases (a), (b) and (c) applies.

◮ Theorem 8. Let ⊏ be any recursive partial order. Let A be an infinite and coinfinite set

which is not in the greatest one-one degree of its many-one degree. Then one can construct

B0, B1, . . . finite-one equivalent to A such that Bi is one-one reducible to Bj if and only if

either i = j or i ⊏ j; that is, one can embed every recursive partial order into the one-one

degrees inside the finite-one degree of A.

Proof. The proof of Theorem 8 is similar to that of Theorem 2. Thus it is mainly listed out
what changes are to be done to prove the result. Let ⊑ be a recursive preorder, that is, it is
transitive and reflexive. Again one defines each set Bi via a surjective finite-one reduction
hi from natural numbers to natural numbers where Bi(x) = A(hi(x)). By construction,
every Bi is finite-one reducible to A and, by surjectivity, A is one-one reducible to every Bi.
The functions hi are constructed in stages and implicitly define Bi as indicated above; the
main constraint is that each y has at least one and at most finitely many preimages x. The
overall quantity and positions of these preimages is controlled by a finite injury construction.
Furthermore, one let ϕ1, ϕ2, . . . be an acceptable numbering of all partial-recursive one-one
functions with ϕe(x + 1) only being defined when ϕe(x) is and one considers the following
requirements Re,i,j :
1. R0,0,0: This requirement makes sure that for each y, i there is an x such that hi(x) = y

and that each hi(x) is eventually defined.
2. R0,i,j with i 6= j and j ⊏ i: This requirement makes sure that, for almost all y, there

are at strictly more x with hi(x) = y as there are x′ with hj(x′) ≤ y. Thus, for all but
finitely many y, one can map the x′ with hj(x′) = y in a one-one way to the x with
hi(x) = y and one can use A′ to map the remaining finitely many x′ to counterparts x

with Bi(x) = Bj(x′).
3. Re,i,j with e > 0 and i 6= j and i 6⊏ j: This requirement makes sure that whenever ϕe is a

one-one reduction from Bi to Bj then a finite variant of a strictly increasing selfreduction
from A to A is constructed—thus, such a selfreduction exists and A is a cylinder, that is,
the finite-one degree of A consists of a single one-one degree which is the largest one-one
degree in the many-one degree of A.

For this, one assumes a default enumeration of all requirements with R0,0,0 coming first and
Re,i,j does not come strictly before Re′,i′,j′ when e′ ≤ e ∧ i′ ≤ i ∧ j′ ≤ j. Let g(Re,i,j) be the
natural number assigned to the requirement Re,i,j and assume that g is a recursive bijection.

◮ Algorithm 9. The algorithm runs in stages. Each stage takes so long until all the require-
ments in it have done the actions linked to it.

At stage s, one first satisfies the requirement R0,0,0:
While there are i, y ≤ s such that there is no x on which hi(x) is already defined to be

y then take the first x where hi(x) is not yet defined and let hi(x) = y. Furthermore, while
there are x, i ≤ s with hi(x) being undefined, let hi(x) = y for the first y not yet in the
range of hi.

Now, one looks for d = 1, 2, . . . , s at the requirement Re,i,j with g(Re,i,j) = d:
If the marker me,i,j is currently not sitting on some number then do the following: Define

the set D = {y : d ≤ y ≤ s and (either fd(y) is not already defined or e = 0 and there
are at least as many x′ with hj(x′) ≤ y as x with hi(x) = y) and none of the markers for
requirements Re′,i′,j′ with 0 < g(Re′,i′,j′) < d is sitting on y}; if D is not empty then place
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me,i,j on the minimum of D and, if e > 0, then remove all other markers sitting there (they
have lower priority).

If now the marker me,i,j is sitting on a number y then one does the following steps.
While the number of x with hi(x) = y is less or equal to the number of x′ with hj(x′) ≤ y

do begin select the least x where hi(x) is not yet defined and let hi(x) = y end.
If e > 0 and ϕe(x) is defined on all x where currently hi(x) = y within s steps then one

finds an x with hi(x) = y and either hj(ϕe(x)) is not yet defined or hj(ϕe(x)) > y; fix this
x for now.

If hj(ϕe(x)) is not yet defined then one defines hj(ϕe(x)) = y′ for the first y′ > y which
is not yet in the range of hj , so that from now on the second subcase hj(ϕe(x)) > y holds.
Now one defines that fd(y) = hj(ϕe(x)).

Now one concludes the step by removing the marker me,i,j from its position if either
e = 0 or fd(y) has been defined. It remains on its position if (a) the marker is waiting
for future stages until all ϕe(x) with hi(x) = y become defined and (b) no higher priority
marker with e > 0 goes onto y.

End of activity for Re,i,j inside stage s.
Once all requirements Re,i,j with g(Re,i,j) ≤ d are handled, this is the end of stage s and

the algorithm goes to stage s + 1.

Recall that Bi(x) = A(hi(x)) for all i, x. Thus every Bi is many-one equivalent to A via hi.
Again, one will establish the properties of the array of sets constructed by above algorithm 9
through a series of four claims.

◮ Claim 10. At every stage, all hi have a finite domain and overall only finitely many new
values of the functions fi are defined in a stage.

Assume by way of contradiction that this claim would be false and let s be the first stage
where for infinitely many pairs a value hi(x) is newly defined. Furthermore, there must
be a first requirement with respect to the requirement number d = g(Re,i,j) for which this
happens. It cannot be that d = 0 as that requirement defines at most for each (i, y) with
i, y ≤ s one value hi(x) = y and furthermore for each (i, x) with i, x ≤ s at most one further
value. This are at most 2 · (s + 1)2 many definitions and thus only finitely many. For d > 0,
there are only two definition steps inside the activity. The substep

“While the number of x with hi(x) = y is less or equal to the number of x′ with
hj(x′) ≤ y do begin select the least x where hi(x) is not yet defined and let hi(x) = y

end.”

defines only finitely many values hi(x) as by assumption there are only finitely many value
hj(x) defined before. Furthermore, there is in this step at most one further point where a
value is defined and that is defining hj(x) = y′ for some value y′ > y. Thus in contrary to
the assumption, only finitely many new definitions are done in this step. Therefore also at
most finitely many new definitions are done in stage s.

◮ Claim 11. For all i, y there are at least one and at most finitely many x with hi(x) = y.
In particular each Bi is finite-one equivalent to A and A is one-one reducible to each Bi.

Note that R0,0,0 enforces that for each pair (i, y) there is at least one x with hi(x) = y.
Thus one has only to show that the overall number is finite.

So assume that there are pairs (i, y) with infinitely many x satisfying hi(x) = y. Among
those pairs, take y as small as possible and fix it from now on.

There are at most y indices i for which there are at least two x with hi(x) = y. The
reason is that for each such i there must be a requirement Re,i,j where e = 0 is possible
with j 6= i and 1 ≤ g(Re,i,j) ≤ y. Note that except for the first x with hi(x) = y, all further
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ones are defined by some requirement Re,i,j with g(Re,i,j) ≤ y and i must be the second
parameter, not the third of the requirement.

Now let E = {i, j : there exists requirement Re,i,j with g(Re,i,j) ≤ y and j 6= i}, let
E′ = {i ∈ E : there are infinitely many x with hi(x) = y} and let E′′ = {i ∈ E′: no j ⊏ i

is in E′}. Note that E, E′, E′′ are finite sets and as ⊏ is a partial order, E′ 6= ∅ implies
E′′ 6= ∅ and that only the i ∈ E satisfy that there are for some y′ ≤ y at least two x′ with
hi(x′) = y′. For each i ∈ E′′ there must be be a marker Re,i,j with g(Re,i,j) ≤ y sitting on y

infinitely often in order to achieve that i ∈ E′, that is, that there are infinitely many x with
hi(x) = y. Therefore one has to look at the stages and marker movement in more detail.

So let s be so large that the following holds:
1. s ≥ y.
2. If i ∈ E and fd(y) gets eventually defined then this happened before stage s.
3. All requirements which define only finitely many hi(x) with hi(x) ≤ y and i ∈ E have

done this before stage s.
4. All markers which go only finitely often onto a number y′ ≤ y have completed these

actions before stage s.
5. All requirements Re,i,j with g(Re,i,j) ≤ y which have a marker only finitely often sitting

on some y′ ≤ y have removed this marker forever from the corresponding y′ before
stage s.

Now let F = {Requirement Re′,i′,j′ : me′,i′,j′ is on y for infinitely many stages and e′ > 0}

and let Re,i,j be the member of F where d = g(Re,i,j) is minimal. Then fd(e) must remain
undefined forever and therefore the marker will not be released; the only higher priority
markers which may get attention are those where e = 0 and those do not remove me,i,j from
its current position; note that by conditions 2 and 3 above in the choice of s, markers which
get attention only finitely often do this before stage s and will not be requesting it again at
stage s or later. Therefore the only way to assign a new hi′(x′) = y for an i′ ∈ E is when
either i′ = i and the number of x′′ with hj(x′′) ≤ y has increased before or when there is
a i′′

⊏ i′ where i′′ ∈ E and the number of x′′ with hi′′(x′′) ≤ y has increased after stage s.
However, this requires that i = i′ or i ⊏ i′ by the fact that me,i,j is sitting on y and does not
make space for other markers. Furthermore, j 6= i and j 6⊏ i, thus there are no new x′ with
hi′(x) = y and i′ = j ∨ i′

⊏ j ∨ i′
⊏ i. Therefore no new x with hi(x) = i are added and, in

contrary to the assumption, i /∈ E′. Thus E′ = ∅, that is, there is no i with hi(x) = y for
infinitely many x. It follows that the stament of Claim 11 is correct.

◮ Claim 12. Assume that e > 0 and i 6= j and ϕe is total and one-one reduces Bi to Bj and
i 6⊏ j. Now the requirement Re,i,j exists and has some value d and fd is defined on almost
all inputs and for all y in its domain, fd satisfies A(y) = A(fd(y)) and fd(y) > y.

This claim has the same proof as Claim 6.

◮ Claim 13. If the two properties ϕe is a one-one reduction from Bi to Bj and i 6⊑ j jointly
hold then A is a cylinder, that is, in the greatest one-one degree of its many-one degree.
Furthermore, if i ⊑ j then Bi is one-one reducible to Bj , independent on what set A is, only
provided that A is infinite and coinfinite. Thus, if A is neither recursive nor a cylinder, then
B0, B1, . . . represent an array of one-one degrees inside the finite-one degree of A, whose
ordering by one-one reducibility coincides with the partial order ⊑ when made reflexive by
using ⊑ instead of ⊏ itself.

By the above, if i 6⊑ j and ϕe is total then fd is defined for almost all y. One makes it total
by mapping all remaining y to the first y′ > y with A(y′) = A(y). Now let fd,0(x) = x

and fd,k+1(x) = fd(fd,k(x)) for all k. Using the functions fd,k one can, given a many-one
reduction f ′ from some set C to A, one can also obtain a one-one reduction f ′′ by defining
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for x = 0, 1, . . . the value f ′′(x) = fd,k(f ′(x)) for the first k where fd,k(f ′(x)) /∈ {f ′′(x′) :
x′ < x}. This proves that C is one-one reducible to A and thus A is in the greatest one-one
degree of its many-one degree.

If now A is infinite and coinfinite and not a cylinder and d = g(Re,i,j) for a requirement
with e > 0, then fd cannot be finitely extended to a total strictly increasing selfreduction
of A, thus either fd is not a partial selfreduction or its domain is coinfinite. This happens
only if the corresponding ϕe is not a one-one reduction from Bi to Bj . As e was chosen
arbitrarily, Bi is not one-one reducible to Bj .

Furthermore, if j ⊏ i, then j 6= i and for all d and all y ≥ d with d = g(R0,i,j), it holds
that either some higher priority requirement with a number strictly below g(0, i, j) has a
marker eventually sitting forever on y or that there are strictly more x with hi(x) = y than
x′ with hj(x′) = y. Thus one can map the x with hi(x) = y for almost all y in a one-one
way the x′ with hj(x′) = y to x with hi(x) = y, let f be the so far constructed mapping.
Now the remaining finitely many undefined places of f can be patched, as for almost all y

there is an x with hi(x) = y not in the range of the f constructed so far and while there are
only finitely many x′ not yet mapped to an x; thus Bj is one-one reducible to Bi. The just
mentioned patching can be done using the oracle A′ and as that oracle is used only finitely
often, a nonuniformly obtained finite table can replace it. If j = i then the identity one-one
reduces Bj to Bi, thus all cases of j ⊑ i are covered. ◭

Mostowski [16] has proven that there is a universal recursive partial order, that is, a recursive
partial order ⊏ such that every further countable partial order can, though not effectively,
be embedded into it. Thus one has the below corollary, where the first part follows directly
from Theorem 8 and the second part is a direct consequence of the fact that when A has a
nonirreducible finite-one degrees then A has also a nonirreducible many-one degree. Gu [10,
Lemma 3.4] provides an outline for this, quite short, construction. Sacks [26] proved the
related result that every countable partial order can be embedded into the structure of all
Turing degrees with Turing reducibility as partial order.

◮ Corollary 14. Let A be a nonrecursive set which is not isomorphic to a cylinder. Now

every at most countable partial order (P,⊏) can be embedded, in a noneffective way, into

the following structures:

(a) the partially ordered set of one-one degrees inside the finite-one degree of A;

(b) the partially ordered set of one-one degrees inside the many-one degree of A.

Furthermore, every nonrecursive nonirreducible many-one (finite-one) degree has a repre-

sentative A which is neither recursive nor a cylinder, thus every countable partial order can

be embedded into the structure of one-one degrees inside such a degree.

◮ Remark 15. This corollary has a direct consequence: A nonirreducible many-one degree
must consist of several finite-one degrees, for example the greatest recursive many-one degree
consists of three finite-one degrees. The irreducible many-one degrees consist, in contrast,
just of one finite-one degrees. Odifreddi [20, Problem 4] asks for providing explicit criteria
of either a many-one degree or of its representatives such that the many-one degree is
irreducible, these criteria should either for the structure of the degree or for one or all
representing sets. An example for such a criterion is that all sets in the many-one degree
are cylinders; this follows from Myhill’s Isomorphism Theorem [17] which states that if two
sets are in the same one-one degree then they are equivalent by a recursive permutation and
therefore, if one of them is of the form A × N then the other one can also be viewed as a
set of pairs with an adjusted pairing function – the adjustment stems from the bijection. So
for Odifreddi’s Problem 4, one of the criteria that a many-one degree is irreducible is that
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it coincides with a finite-one degree. Another criterion is that the one-one degrees inside
a given many-one degree form a chain—this chain has then to collapse to just one single
one-one degree. However, the absence of antichains of length three is then only equivalent
to the following property: either the many-one degree is irreducible or it coincides with the
greatest recursive many-one degree. This property is then also equivalent to the statement
that every finite-one degree inside the many-one degree coincides with a bounded finite-one
degree, see the sections below for more information about bounded finite-one degrees.

3 Finite-one degrees inside many-one degrees

The knowledge of the structure of finite-one degrees inside a many-one degree is a bit limited
compared what one knows about the structure of one-one degrees inside a many-one degree.
However, there are some differences one can easily see when comparing the structure of one-
one degrees inside finite-one degrees with the structure of finite-one degrees inside many-one
degrees. The next proposition summarises facts about finite-one degrees, which can be easily
proven with general knowledge about recursion theory. For these, c(x, y) is Cantor’s pairing
function given as c(x, y) = (x + y) · (x + y + 1) + y.

◮ Theorem 16. The following properties hold for the structure of finite-one degrees inside

many-one degrees.

1. The join A ⊕ B of two sets A, B is the least upper bound of A and B in the finite-one

degrees and thus the finite-one degrees form an upper semilattice; the same applies to the

structure of finite-one degrees inside many-one degrees.

2. The greatest finite-one degree inside a many-one degree is always irreducible, that is,

coincides with a one-one degree and consists only of cylinders.

3. Every maximal set represents a minimal degree within the nonrecursive finite-one de-

grees; however, due to maximal sets being simple, there are only two of the five recursive

finite-one degrees below them: The finite-one degree of the cofinite sets with at least one

nonelement and the finite-one degree consisting of the single set N.

4. Every bi-immune set A represents the least finite-one degree inside its many-one degree

and that many-one degree contains at least two finite-one degrees. Furthermore, the

many-one degree of A does not neither have a least one-one degree nor a minimal one-

one degree and no recursive set is finite-one reducible to A.

Proof. For the first item, consider A, B and assume that A, B are both finite-one reducible
to a set C via f, g. Then for each y there are only finitely many v with f(v) = y and finitely
many w with g(w) = y. Now let h(2v) = f(v) and h(2w + 1) = g(w). Now, for all x,
(A ⊕ B)(x) = C(h(x)), hence h is a many-one reduction from A ⊕ B to C. Furthermore,
there are, for each y, only finitely many x with h(x) = y, as the number of these x is the
sum of the number of all v with f(v) = y and the number of all w with g(w) = y. Thus h

is a finite-one reduction witnessing that A ⊕ B is finite-one reducible to C. Furthermore, it
is clear that both A, B are finite-one reducible to A ⊕ B. Thus A ⊕ B represents the least
upper bound of A and B in the finite-one degrees.

For the second item, just note that if A × N represents the largest one-one degree inside
a many-one degree and if A×N is finite-one reducible to B in the same many-one degree via
f then one can make f to be one-one as follows: Given f , one constructs g inductively over
an enumeration of all pairs c(x, y). If f(c(x, y)) is not yet in the range of g then one defines
g(c(x, y)) = f(c(x, y)) else one finds the first z with f(c(x, z)) not in the so far defined range
of g and let g(c(x, y)) = f(c(x, z)). The verification that this gives a one-one reduction
which is correct is left to the reader.
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For the third item, let A be a maximal set and assume that B is many-one reducible
to A via f ; B is therefore a recursively enumerable set. Either finitely many y /∈ A are in
the range of f and B is recursive or all but finitely many of the y /∈ A are in the range of
f and B is in the same many-one degree as A. Assume the second one, as only that case
is interesting; now one constructs a finite-one reduction g from A to B. g(y) is defined to
be the x in that case which applies first; the first case applies only for finitely many y and
they can be tabled up in the algorithm; which of the cases two or three strikes first in the
remaining cases is determined by parallel search.
1. y is neither in the range of f nor in the set A and x is the smallest number not in B;
2. The number x is the first x found with f(x) = y;
3. y is enumerated into A and x is the y-th element to be enumerated into B by some

fixed one-one enumeration of B; note that B is infinite and every infinite recursively
enumerable set has a recursive one-one enumeration.

Independently of which case first holds, let g(y) be the so found x in the corresponding
case. The function is finite-one for the following reasons: The x in the first case can only
be chosen by the finitely many y which are neither in the range of f nor in A as well as by
one y with f(x) = y. The second case contributes for each x at most one y with g(y) = x,
this is the y with f(x) = y. The third case produces also, for each x, at most one y with
g(y) = x, as that x is the y-th element in a fixed recursive one-one enumeration of B. Thus,
except for the smallest x not in B, each element in the range of g is only the image of at
most two numbers.

For the fourth item, let A be a bi-immune set, that is, a set A such that neither A nor
its complement has an infinite recursive subset. Furthermore, assume that A is many-one
reducible to some set B via f . Then for each y, the set {x : f(x) = y} is a recursive set
which is either a subset of A or its complement; thus it is finite. Therefore f is a finite-one
reduction to B. As A is bi-immune, A is not a cylinder and therefore there are at least two
finite-one degrees in the many-one degree of A. Furthermore, the finite-one degree of A does
not have a least one-one degree, as given A and B = {x : x+1 ∈ A}, the set B has a one-one
degree strictly below that of A and is also bi-immune. Assume by contradiction that one
could one-one reduce A to B via some recursive g, then let x0 = 0 and xn+1 = g(xn) + 1
for all n. For all n, A(g(xn) + 1) = B(g(xn)) = A(xn) and xn+1 /∈ {x0, x1, . . . , xn}, thus the
sequence x0, x1, . . . would become an infinite recursive enumeration of numbers which are
either all in A or all outside A, in contradiction to the bi-immunity of A. Furthermore, no
recursive set is finite-one reducible to any bi-immune set, as each recursive set is infinite or
coinfinite and thus, if the reduction would exist, A would have an infinite recursive subset
or its complement would have an infinite recursive subset. ◭

The results obtained so far allow to classify the finite-one degrees into three groups. The
first and the third group have uncountably many members each (given by cylinders and the
biimmune sets which both exist uncountably often and from each group, only countably
many can go into one finite-one degree) and the second group consists only of two finite-one
degrees, both contained in the greatest recursive many-one dgree.

◮ Corollary 17. Assume that A is a set. Then for the finite-one degree of A, exactly one of
the following statements is true and each possibility can occur.
1. The finite-one and one-one degree of A coincide and A is in the greatest one-one degree

of its many-one degree;
2. The finite-one degree of A is an ascending chain isomorphic to the natural numbers with

their natural ordering and consists either of all nonempty finite sets or of all cofinite sets
with at least one nonelement;
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3. Every recursive partial order (including an antichain) can be embedded into the finite-
one degree of A with each representative of the antichain being strictly one-one above A

itself; these finite-one degrees also do not contain a greatest one-one degree.

The collapse in the first case follows from the second item in Theorem 16. The second item
is well-known and the third item follows from Theorems 2 and 8 and is explictely stated in
Corrolary 14.

Note that there are five recursive finite-one degrees, the two mentioned in the second
item of Corollary 17 and the degrees {∅} and {N} and the finite-one degree of all infinite
and coinfinite recursive sets, the last three consist all of a single one-one degree.

4 Bounded finite-one degrees

In recursion theory, bounded reducibilities (say, bounded truth-table, bounded weak truth-
table and bounded Turing) are given by algorithms (of type truth-table, weak truth-table
and Turing, respectively) which reduce a set A to B in a way that for every x, A(x) is
determined by querying at most c values for some constant c which is independent of x;
for these reducibilities, see for example the references [2, 21]. Similarly one can also define
bounded finite-one reducibility as a variant of finite-one reducibility; here, however, one
bounds the sizes of preimages by a constant, as there is anyway only one query per input.
Thus, as defined in Definition 1, a bounded finite-one reduction f from A to B is a finite-one
reduction from A to B with the additional constraint that there is a constant c such that
for each y there are at most c numbers x with f(x) = y. Although this looks very similar
to finite-one degrees and although these degrees share various properties like forming an
upper semilattice with the standard join, there is a big difference: Nonrecursive bounded
finite-one degrees might consist of infinite ascending chains of one-one degrees where each
two of them are comparable; this differs strongly from the case of finite-one degrees where
the nonrecursive degrees are either irreducible or contain antichains of one-one degrees. The
following result provides the construction of such bounded finite-one degrees.

◮ Theorem 18. There is a nonrecursive bounded finite-one degree such that its one-one

degrees form an ascending chain of the same order type as the natural numbers.

Proof. Let E0 be a maximal set with complement E3 and split E0 using the Sacks splitting
theorem [25] into two recursively enumerable sets E1 and E2 of incomparable Turing degree;
once that is done, one can choose using the hyperimmune-free basis theorem of Jockusch
and Soare [12] a hyperimmune-free set A such that A is a superset of E1 and its complement
a superset of E2.

Now let B be a set in the bounded finite-one degree of A. One now shows that B is
one-one equivalent to the join of ℓ copies of A for some natural number ℓ > 1.

To see this, one considers a bounded finite-one reduction f from B to A. Furthermore,
let ℓ be the biggest number such that for infinitely many y ∈ E3 there are ℓ different x with
f(x) = y; due to f being bounded finite-one, such a maximal ℓ must exist. Furthermore,
ℓ > 0 as otherwise f maps almost all numbers either to E1 or to E2 which allows to construct
a decision-procedure for B, that is, B would be recursive and not in the bounded finite-one
degree of A. This implies that almost all members of E3 are ℓ times in the range of f and
moving finitely many elements from E3 to E1 and E2 as in Theorem 23 will result in all
elements of the new E3 appearing exactly ℓ times in the range of f . There are uniformly
recursive ascending unions with E1 = ∪sE1,s, E2 = ∪sE2,s and E1,0 and E2,0 being infinite.
For each x, let y = f(x) and k be the number such that x is the k-th number mapped to y
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when looking at the x in ascending order. Furthermore, let s be the least number such that
one of the following cases applies and define h by the first case which applies.

1. If y ∈ E1,s then let h(x) be the first element of E1 × {1, 2, . . . , k} not yet in the range of
h;

2. If y ∈ E2,s then let h(x) be the first element of E2 × {1, 2, . . . , k} not yet in the range of
h;

3. If k ≤ ℓ and y /∈ E1,s ∪ E2,s then let h(x) = c(y, k).

By construction, h is one-one. Furthermore, the range of h is N×{1, 2, . . . , ℓ}, as all numbers
y ∈ E3 are exactly ℓ times in the range of f and all numbers y ∈ E1 ∪ E2 are eventually
enumerated into E1 or E2, respectively, and then mapped in a bijective way to the target
set following its enumeration. Thus B is one-one equivalent to the ℓ-fold selfjoin of A.
This directly implies that the one-one degrees inside the bounded finite-one degree of A

are linearly ordered, as B is one-one reducible to C whenever it holds that B is one-one
equivalent to the ℓ-fold selfjoin of A and C is one-one equivalent to the ℓ′-fold selfjoin of A

and ℓ ≤ ℓ′. It remains to show that the hierarchy stands and that the bounded finite-one
degree of A is not irreducible.

Assume now by way of contradiction that h′ one-one reduces the ℓ + 1-fold selfjoin B of
A to the ℓ-fold selfjoin C of A. Now define the following equivalence relation on the set of
natural numbers:

Now let ∼ be the smallest equivalence relation which for all x, y enforces x ∼ y whenever
one of the below conditions holds:

1. x = y (enforcing reflexiveness);

2. y ∼ x (enforcing symmetry);

3. There are k, z1, z2, . . . , zk with x ∼ z1 and z1 ∼ z2 and . . . and zk ∼ y (enforcing
transitiveness);

4. x, y are both in E1 (enforcing all of E1 to go into one equivalence class);

5. x, y are both in E2 (enforcing all of E2 to go into one equivalence class);

6. There are i ∈ {1, 2, . . . , ℓ + 1} and j ∈ {1, 2, . . . , ℓ} with h′(c(x, i)) = c(y, j).

So ∼ is an recursively enumerable equivalence class which respects A, that is, x ∼ y implies
that either both x, y are in A or none of x, y is in A. The reason for this is that none of the
above rules enforces that an element of A and a nonelement of A become equivalent.

By the cohesiveness of E3, an equivalence class of ∼ either has a finite intersection with
E3 or contains almost all elements of E3. The latter cannot happen as both A and its
complement have an infinite intersection with E3. Thus all equivalence classes have only
a finite intersection with E3. Therefore, only finitely many elements of E3 belong to the
equivalence classes of E1 and E2 and there must be further finite equivalence classes which
are a complete subset of E3. Let E4 be such a finite equivalence class and let k be the
number of its elements. Then h′ maps the k · (ℓ + 1) elements of E4 × {1, 2, . . . , ℓ + 1} to the
k · ℓ elements of E4 × {1, 2, . . . , ℓ}. Thus h′ cannot be one-one and therefore the bounded
finite-one degree of A consists of infinitely many one-one degrees. ◭

◮ Remark 19. If one does the above construction of Theorem 18 with two Turing incompa-
rable maximal sets E4 and E5 and then considers A ⊕ B for the so obtained sets A and B

of hyperimmune-free degree, then the one-one degrees of the bounded finite-one degree of
A⊕B consider of all Ci,j being joins of i copies of A and j copies of B with i, j ≥ 1. Now Ci,j

is one-one reducible to Ci′,j′ if and only if i ≤ i′ and j ≤ j′. Thus the one-one degrees are
partially ordered the same way as pairs of natural numbers and so contain finite antichains
of arbitrary length but no infinite antichains. An example of a finite antichain of length
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5 is (5, 1), (4, 2), (3, 3), (2, 4), (1, 5) which translates into the antichain C5,1, C4,2, . . . , C1,5 of
one-one degrees inside the bounded finite-one degree of A ⊕ B.

Furthermore, the bounded finite-one degree of a Martin-Löf random set A contains an
infinite antichain of one-one degrees where the representatives are Bx = A⊕{y : c(x, y) ∈ A}.

◮ Remark 20. It might be important to note that nonrecursive nonirreducible finite-one de-
grees contain an antichain of bounded finite-one degrees. To obtain this result, one modifies
Theorem 8 and its proof as follows: First, in the numbering of all ϕe, one equips the func-
tions ϕ1, ϕ2, . . . with a boundedness-function bound such that for each y there are at most
bound(e) many x with ϕe(x) = y. Note that introducing this bound makes the numbering
nonacceptable, but it still covers all reductions — if for the first instance of the function,
bound(e) was too small, then one produces another index e′ where then bound(e′) is bigger.
Functions intending to violate their bound are forced to be partial in order to preserve the
bound. In the light of this practice, one could even just set bound(e) = e.

Furthermore, in Algorithm 9 of the proof, the corresponding sentence is adjusted to the
following form:

While the number of x with hi(x) = y is less or equal to the product of bound(e) and
the number of x′ with hj(x′) ≤ y do begin select the least x where hi(x) is not yet
defined and let hi(x) = y end.

With the adjustments following from this change in the proof, the proof then actually shows
that every recursive partial order can be embedded effectively into every nonrecursive and
nonirreducible finite-one degree with respect to the bounded finite-one degrees inside that
degree and not just with respect to the one-one degrees inside it. The recursive finite-one
degrees coincide each with one bounded finite-one degree, thus they form a special case, as
two of these degrees have infinitely many one-one degrees inside them.

5 Relativised finite-one equivalence classes inside many-one degrees

The previous sections investigated the structure of finite-one degrees inside many-one de-
grees and further results relating to the structure of bounded finite-one degrees and one-one
degrees inside a finite-one degrees. However, one main topic is left to future research: how
many finite-one degrees can there be in a many-one degree and how the structure of these
finite-one degrees inside the many-one degree looks in detail. Therefore, this section is de-
voted to shed additional light on this question by introducing a further tool of investigation:
Studying the order of degrees inside many-one degrees with respect to stronger reducibilities
relativised to an oracle, mainly the halting problem K. This is made more precise in the
following definition.

◮ Definition 21. A is C-one-one reducible to B if there is a C-recursive one-one function
f with A(x) = B(f(x)) for all x. Similarly for C-finite-one reducibility. The number of
C-finite-one equivalence classes of a many-one degree is called the C-finite-one size of the
many-one degree.

Note that if C is recursive and the C-finite-one size of a many-one degree is one, then this
many-one degree consists of a single one-one degree. This definition can also be used to
show that no oracle C is strong enough to collapse all many-one degrees into finitely many
equivalence classes; instead there always many-one degrees which have, even relative to C,
C-finite-one size ℵ0 and an antichain can be embedded into the equivalence classes relative
to C inside the unrelatived many-one degree.
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◮ Theorem 22. Let C be any oracle and A be a set which is Martin-Löf random relative to

C. Then there is an infinite antichain of finite-one degrees inside the many-one degree of A

and these finite-one degrees are even pairwise C-finite-one incomparable.

Proof. It is known from algorithmic randomness that if A is Martin-Löf random relative
to C then there cannot be an C-r.e. equivalence relation ∼ such that for infinitely many
numbers x there is an y 6= x with y ∼ x and for all x, y it holds that x ∼ y implies
A(x) = A(y). The intuitive reason is that such an equivalence relation would allow to define
a randomness test which captures A and thus proves that A is not random relative to C;
more precisely the class Sk of all sets which respect the first k enumerated equivalences ∼

between two elements not yet made equivalent by the transitive closure of the previously
enumerated equivalences has the measure 2−k and all these classes Sk contain the set A. So
by Martin-Löf’s definition, A could not be random relative to C. Now when one constructs
the set Bi via a hi which maps infinitely many x to any y which is a multiple of 2i but
not of 2i+1 and only one x to each other y produces an array where, when i, j are different,
any function f which C-recursively finite-one reduces Bi to Bj must implicitly map all each
y with infinitely copies in Bi to either at least one y′ with infinitely many copies in Bj or
to infinitely many y′′ with one copy in Bj only; thus the equivalence relation ∼ defined
by y ∼ y′ iff an x is mapped to x′ with hi(x) = y and hj(x′) = y′ will create infinitely
many linkages between pairs (x, x′) if the mapping from Bi to Bj is a C-recursive finite-one
reduction, thus such a mapping does not exist. Therefore the Bi as defined above represent
an infinite antichain of finite-one degrees inside the many-one degree of A. ◭

For the next results, one fixes the oracle C to be the halting problem K. Note that all
nonrecursive but K-recursive many-one degrees then have K-finite-one size 1. Furthermore,
the greatest recursive many-one degree consists of three finite-one degrees, both unrelativised
and also relative to K, that is, the K-finite-one size is also 3. So the next results aim to
construct many-one degrees with K-finite-one sizes 2 and 4. Furthermore, one defines that
for subsets X, Y of N, X × Y equals the set {c(v, w) : v ∈ X ∧ w ∈ Y } where c(v, w) is
Cantor’s pairing function 0.5 · (v + w) · (v + w + 1) + w. Cantor used this pairing function
to show that finite products of the natural numbers have the same cardinality as the set of
natural numbers while the set of real numbers has a higher cardinality; first results about
this are laid out by him in the year 1874 [4].

◮ Theorem 23. There is a many-one degree with K-finite-one size 2.

Proof. Note that there is, relative to K, a K-maximal set. That set is K-r.e. and satisfies
that every further K-r.e. set contains either only finitely many or all but finitely many
elements of its complement. Now one can split this K-maximal set using a relativised
version of Sacks’ splitting theorem [25] into two K-r.e. sets whose Turing degrees relative to
K are incomparable, call these two sets E1 and E2 and let E3 be the complement of E1 ∪E2.
Note that E1 and E2 are recursively inseparable relative to K. By a relativised version of
the hyperimmune-free basis theorem of Jockusch and Soare [12], there is a set A such that,
relative to K, A is of hyperimmune-free Turing degree and E1 ⊆ A and E2 ∩A = ∅. Then E3

has infinitely many elements inside A and infinitely many outside A, as otherwise A would
be either a finite variant of E1 or a finite variant of the complement of E2 and both have
K-r.e. Turing degree strictly above K and thus are not hyperimmune-free relative to K.

Assume that h is a many-one reduction from a set B to A and assume that B is many-one
equivalent with A. Now the range of h can omit infintitely many elements of E1 and of E2,
however, it must have infinite intersections with all of E1, E2, E3, as otherwise the Turing
degree of B is K-r.e. in contradiction to the choice of A. Now, by the fact that infinitely
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many elements of E3 are in the range of h, almost all elements of E3 must be in the range
of A and furthermore, either almost all or only finitely many of them satisfy that infinitely
many x are mapped to them. In the case that almost all elements of E3 are only the image
of finitely many x. Furthermore, let g(x) be a K-recursive function such that, for infinitely
many y ∈ E1 ∩ range(h), g(y) is bigger than the time to enumerate y into E1 relative to K

and for infinitely many y ∈ E2 ∩ range(h), g(y) is bigger than the time to enumerate y into
E2 relative to K and this property also holds for the finite variants E4, E5, E6, E7 of E1 and
E2, respectively, defined below.

First one considers the latter case and one considers E4 and E5 finite variants of E1

and E2, respectively, which got the elements y of E3 which have infinitely many preimages
moved over to E4 in the case that y ∈ A and to E5 in the case that y /∈ A. So E4 is a subset
of A and E5 is disjoint to A.

Now one can construct a new mapping h′ relative to the oracle K using the many-one
reduction h from B to A which will be modified as follows:

1. If h(x) is enumerated into E4 within g(h(x)) + x steps then map x to the first element
of E4 not yet in the range of h′ else let h′(x) = h(x).

2. If h(x) is enumerated into E5 within g(h(x)) + x steps then map x to the first element
of E5 not yet in the range of h′ else let h′(x) = h(x).

3. h′(x) = h(x) for the remaining x.

Assume that h′ maps infinitely many x to the same y. This can only happen if h(x) = y

for almost all x with h′(x) = y, as the first two cases assign each y ∈ E4 ∪ E5 only once as
a new element of h′ which differs from that assigned by h(x). However, if h(x) = y for the
same y and infinitely many x, then y ∈ E4 ∪ E5 and is eventually enumerated into E4 or E5

and from then onwards always redirected to a new element outside the so far constructed
range of h′. Therefore the new function is a K-finite-one reduction from B to A.

The other case is that for almost all y ∈ E3, infinitely many x are mapped to y by h.
Now one adjusts E1 and E2 to E6 and E7 by moving the finitely many elements y ∈ E3

which are only the images of finitely many y over to E6 and E7; note that E6 is a subset of
A and E7 is disjoint to A. Furthermore, consider the set A × N. Now one can construct a
new mapping h′′ relative to the oracle K with the following properties:

1. If x is enumerated into E6 within g(h(x)) + x steps relative to K then h′′(x) is the first
element of E6 × N not yet in the range of h′′;

2. If x is enumerated into E7 within g(h(x)) + x steps relative to K then h′′(x) is the first
element of E7 × N not yet in the range of h′′;

3. The remaining x are mapped in a bijective way to c(h(x), z) for the first z where c(h(x), z)
is not yet in the range of h′′.

Thus B is in this case now finite-one equivalent relative to K to the cylinder A × N; the
surjectivity is coded into the mapping and furthermore each image c(y, z) of a pair can
only occur in the range of h′′ at most once. Furthermore, A is strictly below A × N, as a
K-recursive function can map only for finitely many values c(y, z) with y ∈ E3 to an y′ ∈ E3

with y′ > y; otherwise E3 would not be cohesive relative to K. Thus for each y ∈ E3 exists
a z with c(y, z) being mapped to E1 ∪ E2 and that would mean, that a finite-one reduction
from A × N to A would provide an algorithm to decide A relative to K, in contradiction to
the fact that E1 and E2 have incomparable Turing degrees strictly above K while A has a
Turing degree strictly above K which is also hyperimmune-free relative to K. ◭

◮ Corollary 24. (a) Let E be a maximal set relative to K. Then the many-one degree of E

has K-finite-one size 3.
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(b) Let A as in Theorem 23 and B be its complement. Then the many-one degree of A ⊕ B

has the K-finite-one size 4.

Proof. The main ideas of the proof are the below ones; the details are similar to Theorem 23
and left to the reader.

(a) Let E be a set which is maximal relative to the oracle K. Then the three sets E ×N,
E⊕∅ and E itself satisfy that every set in the many-one degree of E is K-finite-one equivalent
to one of these sets. For the verification, note for each set F many-one reducible to E via f

and inside the many-one degree of E, the set G of all y with only finitely many x satisfying
f(x) = y is recursively enumerable relative to K and thus G contains either only finitely
many or almost all members of the complement of E. Thus E is K-finite-one equivalent
those F where G contains the complement of E and E ⊕ ∅ is K-finite-one equivalent to
those F where G contains almost all but not all members of the complement of G and E ×N

is K-finite-one equivalent to those F where G contains only finitely many members of the
complement of E, this case includes the case that G contains no members of the complement
of E at all.

(b) Taking A as in the proof of Theorem 23 and letting B be the complement of A the
proof is based on the adjustment of the proof of Theorem 23 to show that the many-one
degree A ⊕ B satisfies that all members are K-finite-one equivalent to exactly one of the
sets A ⊕ B, (A × N) ⊕ B, A ⊕ (B × N) and (A × N) ⊕ (B × N). ◭

Note that the A from Theorem 23 is not K-recursive and that it falls into two K-finite-one
equivalence classes. The following result shows that one can obtain that the K-one-one
equivalence classes of this many-one degree are linearly ordered and infinitely many.

◮ Theorem 25. The set A from Theorem 23 satisfies that its many-one degree consists of

infinitely many K-one-one equivalence classes and that for all K-one-one nonequivalent sets

B, C in the many-one degree of A, either B is K-one-one reducible to C or C is K-one-one

reducible to B.

Proof. Let E1, E2, E3 as in Theorem 23, but reuse the further sets of the E-series with a
new meaning. Furthermore, let hB and hC be many-one reductions from B and C to A,
respectively.

Let B = A × {0, 1, . . . , k, k + 1} and C = A × {0, 1, . . . , k}. The sets B and C are
all many-one equivalent to A. Furthermore, one easily sees that C is one-one reducible to
B, c(x, y) with y ≤ k is mapped to itself and c(x, y) with y > k is mapped to c(x, y + 1)
where c is Cantor’s pairing function used in the definition of ×. It is easy to see that this
reduction is correct. Now assume by way of contradiction that f is a K-recursive one-one
reduction from B to C. Then for each x there is an y ∈ {0, 1, . . . , k, k + 1} such that
f(c(x, y)) /∈ {x} × {0, 1, . . . , k} by the pigeonhole principle. If f(c(x, y)) = c(x′, z) for some
z > k then one knows that A(x) = 0. If f(c(x, y)) = c(x′, z) for some z ≤ k then one knows
that A(x′) = A(x) and x′ 6= x. Furthermore, as the K-r.e. infinite set E1 has an infinite
K-recursive subset, one can define a K-recursive one-one function from N to N such that
f(x) 6= x and A(x) = A(f(x)) for all x. However, as E1 ∪ E2 is K-r.e., either finitely many
x ∈ E3 satisfy f(x) ∈ E1 ∪ E2 or all but finitely many x ∈ E3 satisfy f(x) ∈ E1 ∪ E2. Say
the first. Then almost all x ∈ E3 satisfy f(x) ∈ E3. Now either almost all x ∈ E3 satisfy
f(x) > x or almost all x ∈ E3 satisfy f(x) < x. In the first case E3 has an K-recursive
infinite subset what is not the case. In the second case, E3 has an infinite retraceable subset.
For this one can define levels how often one can replace x by f(x) until either f(x) /∈ E3 or
f(x) > x, both happens only finitely often and thus these values can be recognised by a finite
table. Thus one can count with oracle K how many applications of f lead to these finite
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values and obtain two K-r.e. infinite sets F1 and F2 which both intersect E3 in contradiction
to its choice. Thus f must map almost all x from E3 to outside E3. Now one can follow f

as long until one either enumerates x or one of the images f(x), f(f(x)), . . . into E1 or into
E2. This would allow to give a K-recursive decision procedure for A which is defined on all
but at most finitely many numbers (those are members of E3 on finite cycles inside E3) and
that contradicts to E1 and E2 being recursively inseparable relative to K.

Thus there is an infinite ascending chain of one-one degrees inside the many-one degree of
A such that even the oracle K is not strong enough to allow to reverse the one-one reductions
in this chain. Thus there are infinitely many K-one-one equivalence classes inside the many-
one degree of A.

The next step is to show that the one-one degrees inside the many-one degrees are linearly
preordered by K-one-one reductions, note that as just seen there are still infinitely many
one-one degrees which are not made to coincide relative to K. Now let B, C be K-one-one
inequivalent sets in the many-one degree of A. Let finB = {y : only finitely many x satisfy
hB(x) = y} and finC = {y : only finitely many x satisfy hC(x) = y}.

Now assume that finC ∩ E3 is finite. Then B is K-one-one reducible to C as follows.
First one sees that C is K-finite-one equivalent to A × N by Theorem 23. The K-finite-one
reduction from A ×N to C can be made one-one by a better book-keeping of this reduction.
To see this, note that if f is the K-recursive finite-one reduction from A × N to C, then for
every y the set {f(c(y, z)) : z ∈ N} is infinite and thus one can make f on this domain to be
one-one, as for all z, z′ it holds that A(f(c(y, z))) = A(f(c(y, z′))). This adjustment can be
done uniformly in y and thus A is K-one-one reducible to C. Now B is one-one reducible
to A × N, as that is a cylinder. Thus B is K-one-one reducible to C by concatenating the
two K-one-one reductions.

The case that finB ∩ E3 is finite allows for symmetric reasons that C is K-one-one
reducible to B.

The remaining case is that finB ∩ E3 and finC ∩ E3 are both infinite. Let E4 =
E3 ∩ finB ∩ finC , E4 is a finite variant of E3 by E3 being cohesive relative to K, those of
the finitely many left-over elements in E3 −E4 which are in A are put into E1 and those not
in A are put into E2. Now let E5 = {y ∈ E4 : there are at most as many x with hB(x) = y

as z with hC(z) = y} and E6 = E4 − E5. One of E5 or E6 is finite and the elements of
that set will be moved into either E1 or E2 depending on their membership in A as before.
Thus assume without loss of generality that E5 is the infinite set, so one will show that B

is K-one-one reducible to C. Note that E5 is cohesive relative to K like E4.
Now let D1 ⊆ {x : hC(x) ∈ E1} and D2 ⊆ {x : hC(x) ∈ E2} be infinite K-recursive sets.

To see this, assume that one of them, D2, does not exist. Then the set {x : hC(x) ∈ E2}

must be finite. Furthermore, as E5 is cohesive relative to K, the range of hC contains either
finitely many or all but finitely many elements of E5. If now the intersection of the range of
h and E5 is finite, then almost all elements of C are mapped into A and therefore C has a
recursive complement and is recursive itself, a contradiction, as C belongs to a nonrecursive
many-one degree. If the union of E1 and the range of h is a finite variant of E1 ∪ E5 then
E2 is a finite variant of the complement of a K-r.e. set in contrast to be itself K-r.e. and
strictly above K. Thus D1 and D2 both exist and can be used to show that B is K-one-one
reducible to C. Now for every y at least one of the following three conditions holds:

1. y ∈ E1;

2. y ∈ E2;

3. There are only finitely many x with hB(x) = y and finitely many z with hC(z) = y and
there are at least so many such z as such x.

One can investigate for each y using oracle K the situation until one of these three conditions
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is found to apply, these are three K-r.e. conditions which cover the set of all y and thus one
will eventually be found to hold.

Now for all x one computes f(x) for a K-one-one reduction from B to C by doing the
following: One computes y = hB(x) and uses the oracle K to find out which of the three
conditions above holds; if y had been already used before dealing with x, one recovers the
decision which was made for y from a log and then proceed to the same case as previously.

1. If y ∈ E1 applies, then one picks the first element z ∈ D1 found not yet in the range of
f and defines f(x) = z.

2. If y ∈ E2 applies, then one picks the first element z ∈ D2 found not yet in the range of
f and defines f(x) = z.

3. If the third condition applies then one searches for a z not yet in the range of f with
hC(z) = y and let f(x) = z for this z.

The so constructed f is one-one, K-recursive and reduces B to C. ◭

6 Conclusion

The present work studies the collection of one-one degrees inside finite-one degrees and the
collection of finite-one degrees inside many-one degrees. For finite-one degrees, it is shown
that they consist of a single one-one degree if they are the greatest finite-one degree in their
many-one degree; otherwise they consist of infinitely many bounded finite-one degrees and
contain an antichain of these which implies that they also contain an antichain of one-one
degrees. This solves an open problem which was around since Young [31] embedded a dense
linearly ordered set into all nonrecursive many-one degrees which consist of several one-one
degrees; Odifreddi [20, 21] stated this problem explicitly as open. Progress towards this
problem was done by Dëgtev [7] and Batyrshin [1], who proved the existence of antichains
in all r.e. nonrecursive nonirreducible many-one degrees and all limit-recursive nonrecursive
nonirreducible many-one degrees, respectively.

The present results answer this question in full generality and affirmatively. Furthermore,
the paper initiates a detailed study of the finite-one degrees and bounded finite-one degrees
which are between one-one-degrees and many-one degrees so that the following inclusion
relation between these degrees hold (for the degrees of a fixed set):

One-one degree ⊆ bounded finite-one degree ⊆ finite-one degree ⊆ many-one degree.

The following paragraphs (a), (b) and (c) give an overview of the results of the present work.

(a) Finite-one degrees inside many-one degrees. Every many-one degree consists of at
least one and up to countably many finite-one degrees; among those is a greatest finite-one
degree which coincides with its one-one degree (that is, it is an irreducible one-one degree)
and the many-one degree is irreducible if and only if it has only one finite-one degree.
The recursive many-one degree consists of three finite-one degrees which are those of all
finite nonempty sets, all cofinite sets with a nonempty complement and all other recursive
sets; the third degree is irreducible and the other two degrees coincide with bounded finite-
one degrees which in turn are ascending chains of one-one degrees order-isomorphic to the
natural numbers and <. Theorem 8 shows that nonrecursive and nonirreducible many-one
degrees have only one irreducible finte-one degree inside them, namely the greatest one,
and furthermore at least one nonirreducible finite-one degrees, they are described under
(b). Their number is at least one and at most countable, see the open problems below for
more information. Using relativisation, the question into how many relativised finite-one
equivalence classes a many-one degree can fall sheds some initial light into this question and
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Corollary 24 shows that the number of these can be one, two, three, four and infinite relative
to K; for five and greater, no construction is given but the authors believe that at least some
of these numbers of equivalence classes are also possible; in order to limit the size of this
paper, the study was not extended. Furthermore, Remark 15 points out that the irreducible
many-one degrees can be characterised as those consisting of exactly one finite-one degree,
thus providing one possible characterisation for those requested by Odifreddi [20, Problem 4]
who asked for criteria characterising when many-one degrees are irreducible/nonirreducible.

(b) One-one degrees and Bounded finite-one degrees inside finite-one degrees.

Irreducible finite-one degrees coincide with their one-one degree. Nonrecuirsive nonirre-
ducible finite-one degrees satisfy that they embed antichains and all other recursive partial
orders by Theorems 2 and 8. These results in particular show that for nonrecursive and
nonirreducible finite-one degrees, they allow to embed by a uniformly recursive family of
invertible finite-one reductions a sequence of one-one degrees which are ordered according to
any given recursive partial order; one can furthermore achieve that the so embedded one-one
degrees are all not bounded finite-one equivalent with each other, see Remark 20. As ev-
ery nonirreducible and nonrecursive many-one degree contains an nonirreducible finite-one
degree, this answers the question of Odifreddi [20, Problem 4].

(c) One-one degrees inside bounded finite-one degrees. The partial orders of one-
one degrees inside finite-one degrees (by one-one reducibility) can allow more variety than
in the case of finite-one or many-one degrees in the sense that more different cases arise.
Theorem 18 shows that the one-one degrees inside a bounded finite-one degree can be in-
finitely many which are linearly ordered — the order type is that of the natural numbers
with <. Furthermore, there are bounded finite-one degrees which have finite but no infinite
antichains and those which have infinite antichains.

Open Questions. Though much progress to the understanding of the structure inside
many-one degrees is made, still many questions are open.

1. Does every nonrecursive many-one degree have a least finite-one degree inside?

2. A finite-one degree is a maximal finite-one degree inside a given many-one degree if it is
strictly below the greatest finite-one degree, but there are no further finite-one degrees
between these two. A finite-one degree is a minimal finite-one degree inside a given
many-one degree if it is not the least finite-one degree inside its many-one degree and
furthermore either there is no or only the least finite-one degree below this degree. Let
the triple (h, i, j) denote that a many-one degree has h least, i minimal and j maximal
finite-one degrees. Which triples occur, that is, belong to some many-one degree? Irre-
ducible many-one degrees contribute (1, 0, 0) and the greatest recursive many-one degree
contributes (0, 2, 2) to the possible combinations (h, i, j).

3. For which natural numbers ℓ do there exist many-one degrees consisting of exactly ℓ

finite-one degrees? So far known numbers are 1 (irreducible many-one degrees) and 3
(witnessed by the greatest recursive many-one degree).

4. For which natural numbers ℓ do there exist many-one degrees consisting of ℓ K-finite-
one equivalence classes? The irreducible many-one degrees as well as the limit-recursive
nonrecursive many-one degrees provide ℓ = 1. Furthermore, Theorem 23 provides ℓ = 2
and Corollary 24 provides ℓ = 3 and ℓ = 4.

5. For the K-finite-one equivalence classes, one can also ask which combinations (h, i, j)
for least, minimal and maximal K-finite-one equivalence classes inside a given many-
one degree can occur. Besides (1, 0, 0) and (0, 2, 2) from above, one gets also (1, 1, 1)
from the many-one degree with 2 K-finite-one equivalence classes and the many-one
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degree with four K-finite-one equivalence classes in Corollary 24(b) is actually a diamond
contributing (1, 2, 2) to the list of possible triples.

6. Theorem 18 provides a bounded finite-one degree entirely consisting of linearly ordered
one-one degrees forming an ascending chain. Can one also have other linear orders than
this specific one of the natural numbers?

The construction of Theorem 18 was attempted to be done more general—Stephan [28]
studied important questions about strong degrees and wanted in this paper also address
other open questions about strong degrees including the one addressed in the current paper.
His intention was to construct a whole many-one degree where the the one-one degrees are
linearly ordered and together with Zhang—during his exchange to Singapore as an under-
graduate student—he tried another time to make this construction work. Now Theorem 2
shows that generalising Theorem 18 to finite-one or many-one degrees is impossible. So the
open question is which linear orders can be realised by the set of all one-one degrees inside
a bounded finite-one degrees and whether there are any besides the one-element linear or-
der and the linear order of natural numbers. The remarks after the theorem provide other
partial orders which are the orders of a bounded finite-one degree, but no further linear
order.

Note that finite-one degrees and bounded finite-one degrees are less investigated than
one-one degrees and many-one degrees, thus more questions are open for these than for the
other two types of degrees; Bjørn Kjos-Hanssen, one of the authors of the article [13] as
well as the authors of this paper are not aware of any recursion-theoretic paper studying
finite-one degrees besides the mentioned paper, though the notion might be implicitly used
in some proofs. However, finite-one functions are used frequently in topology and set theory
to define reductions in their fields.

There are two parallels between the study of numberings and very strong degrees: First
the same type of reducibilies as considered in the present paper (one-one, bounded finite-one,
finite-one, many-one) can be used in the field of study of numberings; however, there are
differences between these fields: While sets have only two cases which can occur (“x /∈ A”,
“x ∈ A”), for numberings there are usually infinitely many objects, say functions between
natural numbers or subsets of the natural numbers, with additional side conditions restrict-
ing these objects to countably many. Therefore one can construct and study Friedberg
numberings [8, 9] and other special numberings which cannot be defined in the case of
comparing single subsets of natural numbers. However, one has certain special sets whose
many-one degrees and related subdegrees have special properties worth further investigation.
Note that among the four reducibilities between numberings, the many-one reducibility is
the standard reducibility investigated and the other three are less often considered (if at all).

The second parallel is that the proof methods of Theorem 2 and 8 construct arrays of one-
one degrees inside the many-one degree of A by constructing families of invertible finite-one
reductions to A — these reductions are constructed without any knowledge about A beyond
these: A is neither finite nor cofinite nor a cylinder. Only the verification which makes
the functions fd with cofinite domain total in the case that the underlying ϕe is a one-one
reduction between Bi and Bj which should not exist, uses finite amount of knowledge about
A in order to make the fd a total strictly ascending self-reduction. Such a self-reduction only
exists when A is a cylinder, as that was a priori excluded, there are no one-one reductions
ϕe between distinct Bi, Bj in Theorem 2. This type of handling objects enumerated without
really knowing what they are has also been the practice in various papers within the theory
of numberings, for example, the work of Goncharov, Lempp and Solomon [9].

The authors are grateful to Guohua Wu for pointing out these two parallels in the study
of reducibilities between sets on one hand and those between numberings on the other hand
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and for pointing to reference [9].
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