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Classical mathematics can be studied via mathematical logic.

In this talk: set theory and computability theory affect geometric
measure theory.

Goal of this talk
An example a classical theorem in geometric measure theory which
is sensitive to set-theoretical axioms and computability-theoretical
concepts.



Turing Computability

Work over ω = {0, 1, 2, . . .}.

Definition
A set A is (Turing) computable if there exists a program P which
halts in finite time and outputs

P(n) =

{
yes if n ∈ A

no if n ̸∈ A.

We can let a program have access to oracles:

Definition
A program P is an oracle program for A if it can ask at any point
whether “n ∈ A”. Write PA.



Definition
A set A (Turing) computes B if there exists a program PA which
computes B.

Write B ≤T A. This is a partial ordering. The equivalence classes
are called Turing degrees. 0 is the degree of computable sets. By
diagonalising against all programs one gets the jump 0′, and so

0 < 0′ < 0′′ < . . .

Every set A has a degree a, and jumps a′, a′′,...
• |{B |B ≤T A}| = ℵ0 for every A.

• There are 2ℵ0 Turing degrees.

• Every countable partial order is embeddable into degrees.

• 0(α) exists for (some) ordinals α < ω1. → hyperarithmetic sets



In classical mathematics: there is no program which, on input of
any diophantine equation with Z-coefficients, can compute
whether a Z-solution exists. (MRDP)

A Cauchy name for x ∈ R is a sequence (xi )i of rationals which
converges quickly: (∀n)(∀m ≥ n)(|xm − x | < 2−n).

Definition
A function f : R → R is computable if there exists P such that:
whenever (xi )i is a Cauchy name of x ∈ R then

P(xi )i (n) = qn ∈ Q such that |qn − f (x)| < 2−n.

Theorem
Every computable function is continuous.

Every continuous function is computable relative to some oracle.
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Sets of reals

Not only functions between reals can be analysed, but also sets of
reals. Topologically, we get the Borel hierarchy:

Σ˜ 0
1 = open sets Π˜ 0

1 = closed sets
Σ˜ 0

α = union of Π˜ 0
β-sets Π˜ 0

α = intersection of Σ˜ 0
β-sets
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Borel sets are constructible, and this can be expressed in terms of
Turing computability...



Theorem
A set A ⊆ R is Σ˜ 0

1+α iff there exists P and an oracle Z such that
for all x ∈ R we have

x ∈ A ⇐⇒ P(x⊕Z)(α)
halts.

Proof of case α = 0.
Let A be open, and consider {(qi , ri ) | i < ω, qi , ri ∈ Q}.
Let f : ω → ω be so that ran(f ) = {i < ω | (qi , ri ) ⊂ A}. Some Z
computes f via some program PZ . Run PZ to compute
f (0), f (1), . . .. Whenever PZ outputs i , check if qi < x < ri . This
check takes finite time.
If such a Z and P exist, then for every x the program P(x⊕Z) can
tell in finite time whether x ∈ A. Hence it only reads finitely many
bits of x in the process, and hence A must be open.



Consistency and Provability

The Borel hierarchy can measure provability, by looking just
beyond it.

Theorem (Souslin)

There exists a set that is not Borel.

Continuous images of Borel sets are called Σ˜ 1
1. This gives the

projective hierarchy.
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Definition
A set A ⊂ R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2ω).

Which sets satisfy the PSP?

Axioms Behaviour

ZF PSP holds for all Σ˜ 1
1 sets (Souslin)

ZFC PSP fails for some set (Bernstein)
ZF + AD PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L) PSP fails for some Π˜ 1

1 set (Gödel)

Gödel’s theorem gives an optimal, or definable counterexample
(over the base theory ZF).



A Theorem on Fractals

Hausdorff measure is an extension of Lebesgue measure, which can
measure all sets of reals. Its coverings are given a weight:

• if the weight is too high, Hausdorff measure is zero

• if the weight is too low, Hausdorff measure is infinite.

The Hausdorff dimension of a set A ⊂ R2 is the critical value at
which Hausdorff measure is just right.

Theorem (Marstrand, 1954)

Let A ⊂ R2 be Σ˜ 1
1. Then for almost every angle θ we have

dimH(projθ(A)) = min{1, dimH(A)}.



Question
Can more be proven over ZFC?

Theorem (Davies, 1979)

(CH) There exists a set E ⊂ R2 for which

dimH(E ) = 1 yet for every θ we have dimH(projθ(E )) = 0.

The projective hierarchy can calibrate consistency:

Question
Davies’ set is Σ˜ 1

3. Is it consistent (over ZFC) that a set simpler
than Σ˜ 1

3 fails Marstrand’s theorem?



Theorem (R.)

(V=L) There exists a Π˜ 1
1 set E ⊂ R2 for which

dimH(E ) = 1 yet for every θ we have dimH(projθ(E )) = 0.

Marstrand proved that every Σ˜ 1
1 set satisfies the theorem, hence

a Π˜ 1
1 definable counterexample is optimal, and proves the exact

consistency strength.

Our proof uses classical computability theory, descriptive set
theory, and hyperarithmetic theory. As we prove consistency, we
may assume V=L.



The proof

Kolmogorov complexity

A string σ ∈ 2<ω has Kolmogorov complexity K (σ) = n if

n = min{k < ω | (∃P)(ℓ(P) = k ∧ P(∅) = σ)}.

• 01000 has low complexity.

• Any initial segment of π (in binary) has low complexity.

• Random reals exist (by a counting argument).

For x = 0.10110111... define

x↾5 = 0.10110

and x↾n similarly for any x ∈ R, n < ω.



Kolmogorov complexity controls Hausdorff dimension!

Theorem (Lutz and Lutz, 2018)

If A ⊂ R2 then

dimH(A) = min
Z∈2ω

sup
x∈A

lim inf
n→∞

KZ (x↾n)
n

.

Form (the complexity of) points one can measure the complexity
of sets—hence it’s called the point-to-set principle.

Lemma
Every countable set has Hausdorff dimension 0.

Proof.
Suppose A = {xi | i < ω}. Let Z =

⊕
i xi . Let P compute xi↾n on

input (i , n). For fixed i , the pair (i , n) can be coded in length
log(n) + c, which vanishes /n as n → ∞.



Sets of reals by recursion

Theorem (Erdős, Kunen and Mauldin; A. Miller; Vidnyánszky)

(V=L) Recursive constructions of sets of reals can be carried out
to build a Π˜ 1

1 set if at every step of the recursion there exist
arbitrarily complex1 witnesses.

Call this the Π˜ 1
1 recursion theorem.

Can be used to (re-)prove the existence of Π˜ 1
1 Hamel bases,

two-point sets, MAD families, etc.

We use this to build a set that fails Marstrand’s theorem badly by
using the point-to-set principle.

1in the Turing degrees (or hyperdegrees)



The proof

Theorem (R.)

(V=L) There exists a Π˜ 1
1 set E ⊂ R2 for which dimH(E ) = 1 yet

for every θ we have dimH(projθ(E )) = 0.

Proof
Iterate over all lines through the origin {Nα |α < ω1}. At stage α,
suppose E↾α = {xβ |β < α} is given. Let f : ω → α be a
surjection for which f −1[{β}] is infinite for every β < α. Let rβ be
the projection factor for Nβ. Build xα by baby Cohen forcing:

• x0α = empty string

• xnα ∈ Df (n) =
{
σ
∣∣ (∃m)(K (σrf (n)↾m) < 2−n)

}
and xnα ≻ xn−1

α .

The meat of the proof lies in the task of showing that every Dβ is
dense in 2<ω and that there is space for coding.



Proof contd.
Recall Dβ = {σ | (∃m)(K (σrβ↾m) < 2−n)}, and let xn−1

α be given.
Work in terms of intervals: xn−1

α induces an interval [xn−1
α ].

Consider the interval rβ[x
n−1
α ]. Find an extension σ which ends in

a long sequence of zeroes. Take the pull-back and ensure that the
sequence of zeroes is preserved regardless of the extension.

. . . R( )

[xn−1
α ]

( )

r−1
β [σ]

[ ]

J

( )

rβ[x
n−1
α ]

[ ]

I

( )

[σ]

Importantly, the length of σ can be computably bounded. Now, by
the point-to-set principle and the Π˜ 1

1 recursion theorem, the set
E = {xα |α < ω1} works.



By enumerating over suitable oracles (and more coding) one can
show the following:

Theorem (R.)

(V=L) For every ϵ ∈ (0, 1) there exists a Π˜ 1
1 set E ⊂ R2 for which

dimH(E ) = 1 + ϵ yet for every θ we have dimH(projθ(E )) = ϵ.

This is optimal by classical facts of geometric measure theory.



Thank you


