Regularity Properties in Fractal Geometry, Old and New

Linus Richter

National University of Singapore

11 June, 2025

Classical mathematics can be studied via mathematical logic.

In this talk: set theory and computability theory affect geometric measure theory.

Goal of this talk

- show how descriptive set theory can give explicit bounds on provability for regularity properties in fractal geometry (Marstrand's theorem)
- explain a useful connection between fractal geometry and computability theory

What does it mean to measure complexity?

$Complexity = value \ in \ some \ stratified \ space$

Examples

Classical mathematics:

- vector spaces \rightarrow dimension
- finite groups ightarrow (length of) decomposition series
- subsets of $\mathbb{R} \to \mathsf{dimension}$ (Hausdorff, packing,...)

Mathematical logic:

- formulas \rightarrow quantifier complexity
- subsets of $\omega \rightarrow$ Turing degree
- subsets of $\mathbb{R} \to \mathsf{Borel}/\mathsf{projective}$ hierarchy

Computability theory can bridge this gap!

Example: Regularity Properties

A regularity property is a property of sets of reals (i.e. elements of \mathbb{R}) which describe a "nice" structural behaviour.

Definition

A set $A \subseteq \mathbb{R}$ has the perfect set property if it is either countable or if it contains a perfect subset (i.e. a copy of Cantor space 2^{ω}).

So, no set with the PSP can be a counterexample to the Continuum Hypothesis.

Question

Which sets satisfy these regularity properties? And how do we measure that?

Turing Computability

Work over $\omega = \{0, 1, 2, ...\}$. Main idea: successful computations take finite time and finite resources (use principle).

Definition

A set $A \subseteq \omega$ is (Turing) computable if there exists a program P which halts in finite time and outputs

$$P(n) = \begin{cases} \text{yes} & \text{if } n \in A \\ \text{no} & \text{if } n \notin A. \end{cases}$$

Turing's insight: formalise access to more information via oracles:

Definition

A program *P* is an oracle program for $A \subseteq \omega$ if it can ask at any point whether " $n \in A$ ". Write P^A .

Definition

A set A (Turing) computes B if there exists a program P^A which computes B. Write $B \leq_T A$.

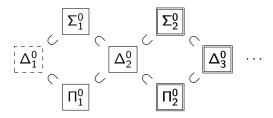
This is a partial ordering. Equivalence classes are the Turing degrees. $\mathbf{0}$ is the degree of computable sets. By diagonalising against all programs one gets the jump $\mathbf{0}'$:

$$\begin{array}{c} \boldsymbol{0} < \boldsymbol{0}' < \boldsymbol{0}'' < \dots \\ \swarrow \\ \boldsymbol{\Sigma}_1^0 \text{-complete} \\ \boldsymbol{\Sigma}_2^0 \text{-complete} \end{array}$$

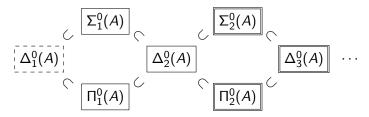
Completeness

Ask any Σ_1^0 -question, i.e. search for a witness—it'll tell you the answer in finite time. Classical example for **0**': the halting problem.

This gives the arithmetical hierarchy over ω :



Here, $\Delta_0^n = \Sigma_0^n \cap \Pi_0^n$. For example, $\Delta_1^0 = \text{c.e.} + \text{co-c.e.}$ This can be relativised to any set $A \subseteq \omega$:

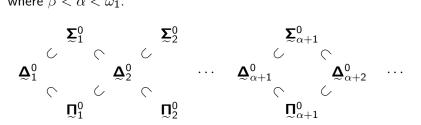


Sets of reals

Not only sets of numbers can be analysed, but also sets of reals. Topologically, we get the Borel hierarchy:

$$\begin{split} & \sum_{\alpha=1}^{0} = \text{open sets} \\ & \sum_{\alpha=1}^{0} = \text{union of } \prod_{\beta}^{0} \text{-sets} \\ \end{split}$$
 $\Delta^0_{\alpha} = \Sigma^0_{\alpha} \cap \Pi^0_{\alpha}$

where $\beta < \alpha < \omega_1$.



Superscript 0 indicates first-orderness—this can be made explicit via Turing computability! Think: Borel = computable

Consistency and Provability

The Borel hierarchy can be extended to the right: there exists a set that is not Borel (Souslin). Continuous images of Borel sets are called \sum_{1}^{1} —this gives the projective hierarchy.

(Think of $\sum_{i=1}^{1}$ as c.e. with real witnesses.)

Note: The projective hierarchy is well-ordered!

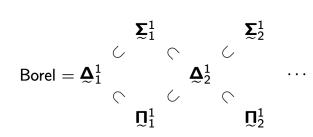
Regularity Properties

Definition

A set $A \subseteq \mathbb{R}$ has the perfect set property if it is either countable or if it contains a perfect subset (i.e. a copy of Cantor space 2^{ω}).

Question

Which sets provably satisfy the PSP?



Some Axioms of Set Theory

ZF = Zermelo-Fränkel set theory

Some axioms give more sets:

AC = Axiom of Choice

- "every non-empty set has a choice function"
- equivalent with a host of axioms: every set can be well-ordered, Zorn's lemma, every vector space has a basis
- at the cost of definable structure: Vitali set, Banach-Tarski

Some axioms give more structure:

AD = Axiom of Determinacy

- "every two-player game on ${\mathbb R}$ has a winning strategy"
- provable for Borel sets (D. Martin), but not beyond; so every regularity property expressible as a game holds for Borel sets
- incompatible with the Axiom of Choice

Best of both worlds:

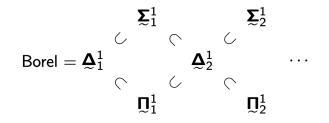
(V=L) = Axiom of Constructibility

- "every set is constructible" (think "definable")
- proves the Axiom of Choice (and the generalised continuum hypothesis)

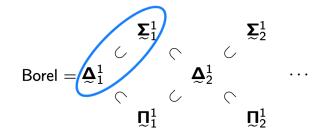
In (V=L), we get *both* lots of sets (through AC) *and* a lot of structure (through definability of every set)!

This gives us the ideal environment to find optimal definable counterexamples to regularity properties.

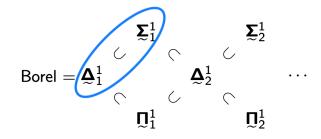
Axioms	Behaviour
ZFC	
ZFC	
ZF + DC + AD	
ZFC + (V = L)	



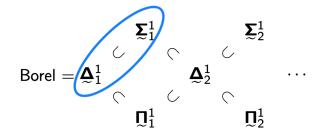
Axioms	Behaviour
ZFC	PSP holds for all $\sum_{i=1}^{1}$ sets (Souslin)
ZFC	
ZF + DC + AD	
ZFC + (V = L)	



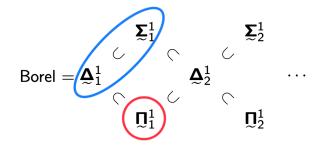
Axioms	Behaviour
ZFC	PSP holds for all \sum_{1}^{1} sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	
ZFC + (V=L)	



Axioms	Behaviour
ZFC	PSP holds for all \sum_{1}^{1} sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V = L)	



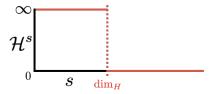
Axioms	Behaviour
ZFC	PSP holds for all \sum_{1}^{1} sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V = L)	PSP fails for some $\mathbf{\Pi}_1^1$ set (Gödel)



A Projection Theorem for Fractals

The *s*-dimensional Hausdorff outer measure \mathcal{H}^s is a generalisation of Lebesgue outer measure; its coverings are given a weight:

- if s is too large, \mathcal{H}^s is zero.
- if s is too small, \mathcal{H}^s is infinite.



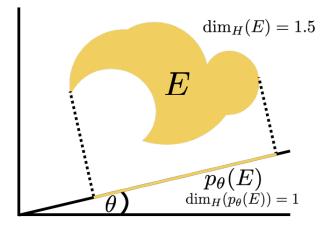
Example

- $\dim_H([0,1]^2) = 2$
- dim_H(middle-third Cantor set) = log(2)/log(3)

Every set of reals has a Hausdorff dimension. \dim_H a classical object of study in geometric measure theory.

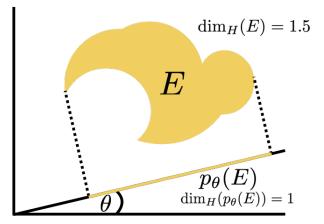
Definition

A set $A \subseteq \mathbb{R}^2$ has the Marstrand property if for almost every angle θ we have dim_H(proj_{θ}(A)) = min{1, dim_H(A)}.



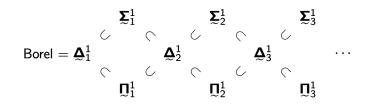
Theorem (Marstrand, 1954)

Every $\sum_{i=1}^{1}$ set has the Marstrand property.

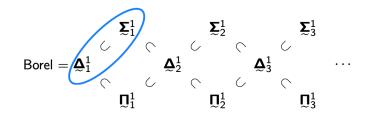


Can we prove more in ZFC?

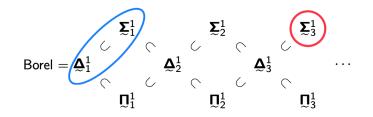
Axioms	Behaviour
ZFC	
ZFC + CH	
ZF + DC + AD	
ZFC + (V = L)	



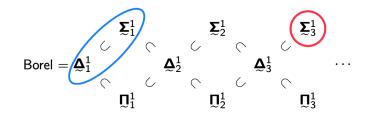
Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	
ZF + DC + AD	
ZFC + (V = L)	



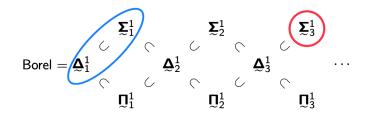
Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	MP fails for some set (Davies, 1979)
ZF + DC + AD	
ZFC + (V = L)	



Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	MP fails for some set (Davies, 1979)
ZF + DC + AD	MP holds for all sets (Stull, 2021)
ZFC + (V = L)	

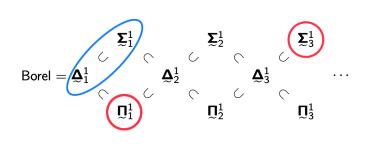


Axioms	Behaviour
	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	MP fails for some set (Davies, 1979)
ZF + DC + AD	MP holds for all sets (Stull, 2021)
ZFC + (V = L)	??



Completing the Picture for MP

Theorem (R.) (V=L) There exists a \mathbf{D}_1^1 set $E \subseteq \mathbb{R}^2$ for which $\dim_H(E) = 1$ yet for every θ we have $\dim_H(\operatorname{proj}_{\theta}(E)) = 0$.



How do we construct such a set? By recursion!

From Points to Sets

What makes a real number complicated? The idea: long descriptions = high complexity

Kolmogorov complexity

A string $\sigma \in 2^{<\omega}$ has Kolmogorov complexity $K(\sigma) = n$ if

n =length of the shortest program P which outputs σ .

- $K(\sigma) \leq \text{ length of } \sigma \text{ (almost)}$
- 0¹⁰⁰⁰ has low Kolmogorov complexity.
- Any initial segment of π has low Kolmogorov complexity.
- Random strings exist (by a counting argument).

Notation

For x = 0.123456789... define $x \upharpoonright_5 = 0.12345$ and $x \upharpoonright_n$ similarly for any $x \in \mathbb{R}$, $n < \omega$.

Characterising Hausdorff Dimension

Theorem (Lutz and Lutz, 2018) If $A \subseteq \mathbb{R}^2$ then $\dim_H(A) = \min_{Z \in 2^{\omega}} \sup_{x \in A} \liminf_{n \to \infty} \frac{K^Z(x \upharpoonright_n)}{n}.$

From (the complexity of) points one can measure the complexity of sets—hence it's called the point-to-set principle.

Lemma

Every countable set has Hausdorff dimension 0.

Proof.

Suppose $A = \{x_i \mid i < \omega\}$. Let $Z = \bigoplus_i x_i$. Let P compute $x_i \upharpoonright_n$ on input (i, n). For fixed i, the pair (i, n) has a description of length $\log(n) + c$, which vanishes /n as $n \to \infty$.

The $\prod_{i=1}^{1}$ -recursion theorem

Theorem (Erdős, Kunen and Mauldin; A. Miller; Vidnyánszky)

(V=L) If at every step of the recursion there exist arbitrarily \leq_{T} -complex witnesses, the constructed set is $\mathbf{\Pi}_{1}^{1}$.

The idea:

- 1. Well-order the set of conditions $\{c_{\alpha} \mid \alpha < \omega_1\}$.
- 2. If $A_{\alpha} \subseteq \mathbb{R}$ is a partial solution and c_{α} is not yet satisfied, show that $\{x \in \mathbb{R} \mid x \text{ satisfies } c_{\alpha} \text{ and } A \cup \{x\} \text{ is a partial solution}\}$ is cofinal in $\leq_{\mathcal{T}}$.
- 3. Pick such x_{α} , and define $A = \{x_{\alpha} \mid \alpha < \omega_1\}$.

Example

(V=L) There is a \prod_{1}^{1} decomposition of \mathbb{R}^{3} into disjoint circles.

The proof

Theorem (R.)

(V=L) There exists a $\mathbf{\Pi}_1^1$ set $E \subseteq \mathbb{R}^2$ for which $\dim_H(E) = 1$ yet for every θ we have $\dim_H(\operatorname{proj}_{\theta}(E)) = 0$.

Proof sketch.

- 1. Conditions are straight lines through the origin, $\{L_{\alpha} \mid \alpha < \omega_1\}$.
- 2. At stage α , find a candidate $x_{\alpha} \in \mathbb{R}^2$ which has
 - high Kolmogorov complexity by itself, but
 - small Kolmogorov complexity when projected onto L_{β} for all $\beta \leq \alpha$.
- 3. Show this set of candidates is cofinal in \leq_T . Pick some x_{α} .
- 4. (Build x_{α} by recursion, too, essentially by Cohen forcing.)
- 5. By \prod_{1}^{1} -recursion, the set $\{x_{\alpha} \mid \alpha < \omega_{1}\}$ is \prod_{1}^{1} ; by the point-to-set principle, it has the desired properties.

By enumerating over suitable oracles (and more coding) one can even show the following:

Theorem (R.)

(V=L) For every $\epsilon \in (0,1)$ there exists a \prod_{1}^{1} set $E \subseteq \mathbb{R}^{2}$ for which $\dim_{H}(E) = 1 + \epsilon$ yet for every θ we have $\dim_{H}(\operatorname{proj}_{\theta}(E)) = \epsilon$.

This is optimal by classical facts of geometric measure theory (e.g. Hausdorff dimension cannot drop by more than 1 under projection).

One final example: Erdős-Volkmann Ring Problem

Theorem (Edgar-Miller-Bourgain)

Suppose $R \subseteq (\mathbb{R}, +, \times)$ is a proper subring. If R is Σ_1^1 then either $\dim_H(R) = 0$ or $R = \mathbb{R}$.

Theorem (Davies-Mauldin)

(CH) For every $s \in (0, 1)$, there exists a proper subring $R \subseteq \mathbb{R}$ such that dim_{*H*}(*R*) = *s*. Under (*V*=*L*), this subring is $\sum_{i=1}^{n} \mathbb{E}_{2}^{1}$.

$$\mathbf{\Sigma}_{1}^{1} \qquad \mathbf{\Sigma}_{2}^{1}$$

$$\mathbf{Borel} = \mathbf{\Delta}_{1}^{1} \qquad \mathbf{\Delta}_{2}^{1} \qquad \cdots$$

$$\mathbf{\nabla} \qquad \mathbf{\nabla} \qquad \mathbf{$$

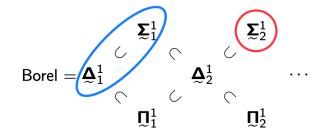
One final example: Erdős-Volkmann Ring Problem

Theorem (Edgar-Miller-Bourgain)

Suppose $R \subseteq (\mathbb{R}, +, \times)$ is a proper subring. If R is Σ_1^1 then either $\dim_H(R) = 0$ or $R = \mathbb{R}$.

Theorem (Davies-Mauldin)

(CH) For every $s \in (0, 1)$, there exists a proper subring $R \subseteq \mathbb{R}$ such that dim_{*H*}(*R*) = *s*. Under (*V*=*L*), this subring is $\sum_{i=1}^{n} \mathbb{E}_{2}^{1}$.



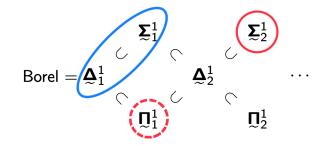
One final example: Erdős-Volkmann Ring Problem

Theorem (Edgar-Miller-Bourgain)

Suppose $R \subseteq (\mathbb{R}, +, \times)$ is a proper subring. If R is Σ_1^1 then either $\dim_H(R) = 0$ or $R = \mathbb{R}$.

Theorem (Davies-Mauldin)

(CH) For every $s \in (0, 1)$, there exists a proper subring $R \subseteq \mathbb{R}$ such that dim_{*H*}(*R*) = *s*. Under (*V*=*L*), this subring is $\sum_{i=1}^{n} \mathbb{E}_{2}^{1}$.



Conclusions

An example of multiple ideas of definability and complexity coming together:

- set theory \longleftrightarrow regularity properties
- to characterise them—and other objects in classical mathematics—use computability theory
 - locally: point-to-set principle for Hausdorff dimension, packing dimension; continuity for functions between polish spaces
 - globally: placement of objects in hierarchies, e.g. Borel/projective hierarchy, arithmetic hierarchy, to prove provability
- many other examples beyond descriptive set theory: e.g. reverse mathematics, computable structure theory

Thank you

Computability in Analysis

A Cauchy name for $x \in \mathbb{R}$ is a sequence $(x_i)_i$ of rationals which converges quickly: $(\forall n)(\forall m \ge n)(|x_m - x| < 2^{-n})$.

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exists P such that: whenever $(x_i)_i$ is a Cauchy name of $x \in \mathbb{R}$ then

$$\mathcal{P}^{(x_i)_i}(n) = q_n \in \mathbb{Q}$$
 such that $|q_n - f(x)| < 2^{-n}.$

Theorem

Every computable function is continuous.

Computability in Analysis

A Cauchy name for $x \in \mathbb{R}$ is a sequence $(x_i)_i$ of rationals which converges quickly: $(\forall n)(\forall m \ge n)(|x_m - x| < 2^{-n})$.

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exists P such that: whenever $(x_i)_i$ is a Cauchy name of $x \in \mathbb{R}$ then

$$P^{(x_i)_i}(n) = q_n \in \mathbb{Q}$$
 such that $|q_n - f(x)| < 2^{-n}.$

Theorem

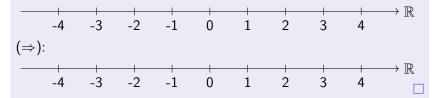
Every computable function is continuous.

Every continuous function is computable relative to some oracle.

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

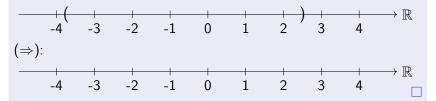
Proof by picture of case $\alpha = 0$ (omit oracle).



Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).



Theorem

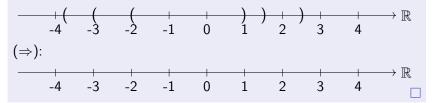
A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

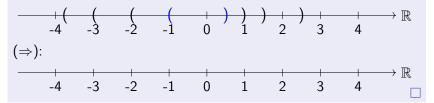
Proof by picture of case $\alpha = 0$ (omit oracle).



Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).



Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (\Leftarrow): $\xrightarrow{}$ $\xrightarrow{-4}$ -3 -2 -1 0 1 2 3 4 (\Rightarrow): $\xrightarrow{}$ $\xrightarrow{-4}$ -3 -2 -1 0 1 2 3 4 $\xrightarrow{}$ \mathbb{R}

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{n=1}^{\infty} f_{n+n}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

-1

-3

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (⇐): ર // A (\Rightarrow) : \mathbb{R} 3

0

1

2

4

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (\Leftarrow): (=):(

0

1

2

R

3

4

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (\Leftarrow): $\xrightarrow{} + (-(-(-(-+)))) + -) + - + \rightarrow \mathbb{R}$ (\Rightarrow): $\xrightarrow{} + (-(-(-+))) + -) + - + \rightarrow \mathbb{R}$

0

1

2

3

4

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

-1

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (\Leftarrow): (=):(

Ò

2

'n

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

-1

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (\Leftarrow): (=):(

Ò

Theorem

A set $A \subseteq \mathbb{R}$ is $\sum_{1+\alpha}^{0}$ iff there exists P and an oracle Z such that for all $x \in \mathbb{R}$ we have: $x \in A \iff P^{(x \oplus Z)^{(\alpha)}}$ halts in finite time.

Proof by picture of case $\alpha = 0$ (omit oracle).

-1

Want: A is open iff there exists P such that $x \in A \iff P^x$ halts. (\Leftarrow): (=):(

Ò