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Classical mathematics can be studied via mathematical logic.

In this talk: set theory and computability theory affect geometric
measure theory.

Goal of this talk

® show how descriptive set theory can give explicit bounds on
provability for regularity properties in fractal geometry
(Marstrand'’s theorem)

® explain a useful connection between fractal geometry and
computability theory



What does it mean to measure complexity?

Complexity = value in some stratified space
Examples

Classical mathematics:
® vector spaces — dimension
e finite groups — (length of) decomposition series
® subsets of R — dimension (Hausdorff, packing,...)
Mathematical logic:
® formulas — quantifier complexity
® subsets of w — Turing degree

® subsets of R — Borel/projective hierarchy

Computability theory can bridge this gap!



Example: Regularity Properties

A regularity property is a property of sets of reals (i.e. elements

of R) which describe a “nice” structural behaviour.

Definition

A set A C R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2%).

So, no set with the PSP can be a counterexample to the
Continuum Hypothesis.

Question

Which sets satisfy these regularity properties?
And how do we measure that?



Turing Computability

Work over w = {0,1,2,...}. Main idea: successful computations
take finite time and finite resources (use principle).

Definition

A set A C w is (Turing) computable if there exists a program P
which halts in finite time and outputs

P(n) = yes ffneA
no ifngA.

Turing's insight: formalise access to more information via oracles:
Definition

A program P is an oracle program for A C w if it can ask at any
point whether “n € A”. Write PA.



Definition
A set A (Turing) computes B if there exists a program P# which
computes B. Write B <t A.

This is a partial ordering. Equivalence classes are the Turing
degrees. 0 is the degree of computable sets. By diagonalising
against all programs one gets the jump 0’

0<0<0"<...

¥ 9-complete
¥9-complete
Completeness

Ask any ¥ ?-question, i.e. search for a witness—it'll tell you the
answer in finite time. Classical example for 0': the halting problem.



This gives the arithmetical hierarchy over w:

7

ng

A

®

A3

n

Here, Ag = >§ NTlj. For example, Acl’ = c.e. + co-c.e.
This can be relativised to any set A C w:
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Sets of reals

Not only sets of numbers can be analysed, but also sets of reals.
Topologically, we get the Borel hierarchy:

%9 = open sets MY = closed sets
2% = union of N9 j-sets MY = intersection of );%—sets
A% =3x2nng

where 0 < a < ws.
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Superscript 0 indicates first-orderness—this can be made explicit
via Turing computability! Think: Borel = computable



Consistency and Provability

The Borel hierarchy can be extended to the right: there exists a set
that is not Borel (Souslin). Continuous images of Borel sets are
called );%—this gives the projective hierarchy.

DX, b2
C Q &

(Think of X1 as c.e. with real witnesses.)

Note: The projective hierarchy is well-ordered!



Regularity Properties
Definition

A set A C R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2v).

Question

Which sets provably satisfy the PSP?
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Some Axioms of Set Theory
ZF = Zermelo-Frankel set theory
Some axioms give more sets:
AC = Axiom of Choice

® ‘“every non-empty set has a choice function”

® equivalent with a host of axioms: every set can be
well-ordered, Zorn's lemma, every vector space has a basis

® at the cost of definable structure: Vitali set, Banach-Tarski
Some axioms give more structure:
AD = Axiom of Determinacy

® ‘“every two-player game on R has a winning strategy”

® provable for Borel sets (D. Martin), but not beyond; so every
regularity property expressible as a game holds for Borel sets
® incompatible with the Axiom of Choice



Best of both worlds:
(V=L) = Axiom of Constructibility
® ‘“every set is constructible” (think “definable™)

® proves the Axiom of Choice (and the generalised continuum
hypothesis)

In (V=L), we get both lots of sets (through AC) and a lot of
structure (through definability of every set)!

This gives us the ideal environment to find optimal definable
counterexamples to regularity properties.



The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC
ZFC
/F4+DC+ AD
ZFC+ (V=L)
i x5
C o C
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC
/F +DC+ AD
ZFC + (V=L)
1
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC PSP fails for some set (Bernstein)
/F+DC+ AD
ZFC+ (V=L)
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC PSP fails for some set (Bernstein)

ZF + DC+ AD | PSP holds for all sets (Mycielski, Swierczkowski)
ZFC+ (V=L)

5]
e C
Borel = Al
¢ C ¢
ni 03



The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC PSP fails for some set (Bernstein)

ZF + DC+ AD | PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L) | PSP fails for some M} set (Godel)
1
%

Borel = Al
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A Projection Theorem for Fractals
The s-dimensional Hausdorff outer measure H* is a generalisation
of Lebesgue outer measure; its coverings are given a weight:
® if s is too large, H?® is zero.
e if sis too small, H* is infinite.
o0 .

HS

0

S dil.nH
Example
* dimy ([0,1]?) =2
¢ dimy(middle-third Cantor set) = log(2)/ log(3)

Every set of reals has a Hausdorff dimension. dimy a classical
object of study in geometric measure theory.



Definition
A set A C R? has the Marstrand property if for almost every
angle 6 we have dimy(projg(A)) = min{1,dimy(A)}.

dimg(E) = 1.5

po(E)

) dmal(E) =1




Theorem (Marstrand, 1954)

Every £} set has the Marstrand property.

dimy (E) = 1.5

E :

" po(E)

| __—p)  dimalp(B) =1

Can we prove more in ZFC?




Axioms Behaviour
ZFC
ZFC+ CH
/F+DC+ AD
ZFC+ (V=L)
X, % 3
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Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC+CH
ZF+DC+ AD
ZFC + (V=L)
I DX
Q C Q C
Borel = A} A3
S C ¢ < ¢
ik n; 03



Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC + CH MP fails for some set (Davies, 1979)
ZF+DC+ AD

ZFC + (V=L)
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Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC + CH MP fails for some set (Davies, 1979)
ZF + DC + AD | MP holds for all sets (Stull, 2021)

ZFC+ (v=L) |77
NG
c ¢ o ¢

Borel = Al

n;



Completing the Picture for MP

Theorem (R.)
V=L) There exists a I;I1 set E C R? for which
1

dimy(E) =1 yet for every § we have dimpy(projs(E)) = 0.

Borel = Al

How do we construct such a set? By recursion!



From Points to Sets
What makes a real number complicated?
The idea: long descriptions = high complexity
Kolmogorov complexity

A string o € 2<% has Kolmogorov complexity K(c) = n if

n = length of the shortest program P which outputs o.

® K(o) < length of o (almost)

e 01000 has Jow Kolmogorov complexity.

® Any initial segment of 7w has low Kolmogorov complexity.
¢ Random strings exist (by a counting argument).

Notation

For x = 0.123456789... define x[5 = 0.12345 and x|, similarly for
any x € R, n < w.



Characterising Hausdorff Dimension

Theorem (Lutz and Lutz, 2018)

If A C R? then

K%(xIn
dimy(A) = Zm|2n suplinl)inf(;d).
€2¥ xep N0

From (the complexity of) points one can measure the complexity
of sets—hence it's called the point-to-set principle.
Lemma

Every countable set has Hausdorff dimension 0.

Proof.

Suppose A = {x; |i < w}. Let Z =P, x;. Let P compute x;[, on
input (i, n). For fixed i, the pair (i, n) has a description of length
log(n) + ¢, which vanishes /n as n — oc. O



The M}-recursion theorem

Theorem (Erdés, Kunen and Mauldin; A. Miller; Vidnyanszky)

(V=L) If at every step of the recursion there exist
arbitrarily <7-complex witnesses, the constructed set is 3.

The idea:

1. Well-order the set of conditions {c, | < w1}

2. If A, C R is a partial solution and ¢, is not yet satisfied, show
that {x € R| x satisfies ¢, and AU {x} is a partial solution}
is cofinal in <.

3. Pick such x,, and define A = {x, | @ < w1 }.

Example

(V=L) There is a 1 decomposition of R* into disjoint circles.



The proof
Theorem (R.)

(V=L) There exists a M} set E C R? for which dimy(E) = 1 yet
for every 6 we have dimy(projy(E)) = 0.

Proof sketch.

1. Conditions are straight lines through the origin, {L, | o < w1}.
2. At stage «, find a candidate x, € R? which has

® high Kolmogorov complexity by itself, but
® small Kolmogorov complexity when projected onto Lg for
all g < a.

3. Show this set of candidates is cofinal in <+. Pick some x,.
4. (Build x, by recursion, too, essentially by Cohen forcing.)

5. By Mi-recursion, the set {x, |a < w;} is Mi; by the
point-to-set principle, it has the desired properties.

]



By enumerating over suitable oracles (and more coding) one can
even show the following:

Theorem (R.)

(V=L) For every € € (0,1) there exists a M1 set E C R? for which
dimy(E) = 1+ € yet for every 6 we have dimy(projy(E)) = €.

This is optimal by classical facts of geometric measure theory (e.g.
Hausdorff dimension cannot drop by more than 1 under projection).



One final example: Erdds-Volkmann Ring Problem
Theorem (Edgar-Miller-Bourgain)

Suppose R C (R, +, x) is a proper subring. If R is £1 then either
dimy(R) =0 or R =R.

Theorem (Davies-Mauldin)

(CH) For every s € (0, 1), there exists a proper subring R C R
such that dimy(R) = s. Under (V=L), this subring is 3.

i )

Borel = Al Al
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One final example: Erdés-Volkmann Ring Problem
Theorem (Edgar-Miller-Bourgain)

Suppose R C (R, +, x) is a proper subring. If R is £1 then either
dimy(R) =0 or R =R.

Theorem (Davies-Mauldin)

(CH) For every s € (0,1), there exists a proper subring R C R
such that dimy(R) = s. Under (V=L), this subring is 3.
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Conclusions

An example of multiple ideas of definability and complexity coming
together:

® set theory <— regularity properties
® to characterise them—and other objects in classical
mathematics—use computability theory
® |ocally: point-to-set principle for Hausdorff dimension, packing
dimension; continuity for functions between polish spaces
® globally: placement of objects in hierarchies, e.g.
Borel /projective hierarchy, arithmetic hierarchy, to prove
provability

® many other examples beyond descriptive set theory: e.g.
reverse mathematics, computable structure theory



Thank you



Computability in Analysis

A Cauchy name for x € R is a sequence (x;); of rationals which
converges quickly: (Vn)(¥Ym > n)(|xm — x| < 27").

Definition

A function f: R — R is computable if there exists P such that:
whenever (x;); is a Cauchy name of x € R then

P(Xi)i(n) =g, € Q such that |Cln - f(X)| <27

Theorem

Every computable function is continuous.



Computability in Analysis

A Cauchy name for x € R is a sequence (x;); of rationals which
converges quickly: (Vn)(¥Ym > n)(|xm — x| < 27").

Definition

A function f: R — R is computable if there exists P such that:
whenever (x;); is a Cauchy name of x € R then

P(Xi)i(n) =g, € Q such that an - f(X)| <27

Theorem

Every computable function is continuous.
Every continuous function is computable relative to some oracle.



Computability in Topology

Theorem

A set ACR is X9, , iff there exists P and an oracle Z such that
for all x € R we have: x € A <= P*®2) pajts in finite time.

Proof by picture of case @ = 0 (omit oracle).

Want: A is open iff there exists P such that x € A <= P* halts.
(«<):

‘ R

e
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