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Classical mathematics can be studied via mathematical logic.

In this talk: set theory and computability theory affect geometric
measure theory.

Goal of this talk

• show how descriptive set theory can give explicit bounds on
provability for regularity properties in fractal geometry
(Marstrand’s theorem)

• explain a useful connection between fractal geometry and
computability theory



What does it mean to measure complexity?

Complexity = value in some stratified space

Examples

Classical mathematics:

• vector spaces → dimension

• finite groups → (length of) decomposition series

• subsets of R → dimension (Hausdorff, packing,...)

Mathematical logic:

• formulas → quantifier complexity

• subsets of ω → Turing degree

• subsets of R → Borel/projective hierarchy

Computability theory can bridge this gap!



Example: Regularity Properties

A regularity property is a property of sets of reals (i.e. elements
of R) which describe a “nice” structural behaviour.

Definition

A set A ⊆ R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2ω).

So, no set with the PSP can be a counterexample to the
Continuum Hypothesis.

Question

Which sets satisfy these regularity properties?
And how do we measure that?



Turing Computability

Work over ω = {0, 1, 2, . . .}. Main idea: successful computations
take finite time and finite resources (use principle).

Definition

A set A ⊆ ω is (Turing) computable if there exists a program P
which halts in finite time and outputs

P(n) =

{
yes if n ∈ A

no if n ̸∈ A.

Turing’s insight: formalise access to more information via oracles:

Definition

A program P is an oracle program for A ⊆ ω if it can ask at any
point whether “n ∈ A”. Write PA.



Definition

A set A (Turing) computes B if there exists a program PA which
computes B. Write B ≤T A.

This is a partial ordering. Equivalence classes are the Turing
degrees. 0 is the degree of computable sets. By diagonalising
against all programs one gets the jump 0′:

0 < 0′ < 0′′ < . . .

Σ0
1-complete

Σ0
2-complete

Completeness

Ask any Σ0
1-question, i.e. search for a witness—it’ll tell you the

answer in finite time. Classical example for 0′: the halting problem.



This gives the arithmetical hierarchy over ω:
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Sets of reals

Not only sets of numbers can be analysed, but also sets of reals.
Topologically, we get the Borel hierarchy:

Σ˜ 0
1 = open sets Π˜ 0

1 = closed sets
Σ˜ 0

α = union of Π˜ 0
β-sets Π˜ 0

α = intersection of Σ˜ 0
β-sets
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α

where β < α < ω1.
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Superscript 0 indicates first-orderness—this can be made explicit
via Turing computability! Think: Borel = computable



Consistency and Provability

The Borel hierarchy can be extended to the right: there exists a set
that is not Borel (Souslin). Continuous images of Borel sets are
called Σ˜ 1

1—this gives the projective hierarchy.

Borel = ∆˜ 1
1

Σ˜ 1
1

Π˜ 1
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∆˜ 1
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2
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· · ·
⊂
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(Think of Σ˜ 1
1 as c.e. with real witnesses.)

Note: The projective hierarchy is well-ordered!



Regularity Properties

Definition

A set A ⊆ R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2ω).

Question

Which sets provably satisfy the PSP?



Some Axioms of Set Theory

ZF = Zermelo-Fränkel set theory

Some axioms give more sets:

AC = Axiom of Choice

• “every non-empty set has a choice function”

• equivalent with a host of axioms: every set can be
well-ordered, Zorn’s lemma, every vector space has a basis

• at the cost of definable structure: Vitali set, Banach-Tarski

Some axioms give more structure:

AD = Axiom of Determinacy

• “every two-player game on R has a winning strategy”

• provable for Borel sets (D. Martin), but not beyond; so every
regularity property expressible as a game holds for Borel sets

• incompatible with the Axiom of Choice



Best of both worlds:

(V=L) = Axiom of Constructibility

• “every set is constructible” (think “definable”)

• proves the Axiom of Choice (and the generalised continuum
hypothesis)

In (V=L), we get both lots of sets (through AC) and a lot of
structure (through definability of every set)!

This gives us the ideal environment to find optimal definable
counterexamples to regularity properties.



The “usual” pattern for regularity properties

Axioms Behaviour

ZFC

PSP holds for all Σ˜ 1
1 sets (Souslin)

ZFC

PSP fails for some set (Bernstein)

ZF + DC + AD

PSP holds for all sets (Mycielski, Swierczkowski)

ZFC + (V=L)

PSP fails for some Π˜ 1
1 set (Gödel)
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The “usual” pattern for regularity properties

Axioms Behaviour

ZFC PSP holds for all Σ˜ 1
1 sets (Souslin)

ZFC PSP fails for some set (Bernstein)
ZF + DC + AD PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L) PSP fails for some Π˜ 1

1 set (Gödel)



A Projection Theorem for Fractals
The s-dimensional Hausdorff outer measure Hs is a generalisation
of Lebesgue outer measure; its coverings are given a weight:
• if s is too large, Hs is zero.
• if s is too small, Hs is infinite.

Example

• dimH

(
[0, 1]2

)
= 2

• dimH(middle-third Cantor set) = log(2)/ log(3)

Every set of reals has a Hausdorff dimension. dimH a classical
object of study in geometric measure theory.



Definition

A set A ⊆ R2 has the Marstrand property if for almost every
angle θ we have dimH(projθ(A)) = min{1, dimH(A)}.



Theorem (Marstrand, 1954)

Every Σ˜ 1
1 set has the Marstrand property.

Can we prove more in ZFC?
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MP holds for all Σ˜ 1
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Completing the Picture for MP

Theorem (R.)

(V=L) There exists a Π˜ 1
1 set E ⊆ R2 for which

dimH(E ) = 1 yet for every θ we have dimH(projθ(E )) = 0.

How do we construct such a set? By recursion!



From Points to Sets
What makes a real number complicated?
The idea: long descriptions = high complexity

Kolmogorov complexity

A string σ ∈ 2<ω has Kolmogorov complexity K (σ) = n if

n = length of the shortest program P which outputs σ.

• K (σ) ≤ length of σ (almost)

• 01000 has low Kolmogorov complexity.

• Any initial segment of π has low Kolmogorov complexity.

• Random strings exist (by a counting argument).

Notation

For x = 0.123456789... define x↾5 = 0.12345 and x↾n similarly for
any x ∈ R, n < ω.



Characterising Hausdorff Dimension

Theorem (Lutz and Lutz, 2018)

If A ⊆ R2 then

dimH(A) = min
Z∈2ω

sup
x∈A

lim inf
n→∞

KZ (x↾n)
n

.

From (the complexity of) points one can measure the complexity
of sets—hence it’s called the point-to-set principle.

Lemma

Every countable set has Hausdorff dimension 0.

Proof.

Suppose A = {xi | i < ω}. Let Z =
⊕

i xi . Let P compute xi↾n on
input (i , n). For fixed i , the pair (i , n) has a description of length
log(n) + c, which vanishes /n as n→∞.



The Π˜ 1
1-recursion theorem

Theorem (Erdős, Kunen and Mauldin; A. Miller; Vidnyánszky)

(V=L) If at every step of the recursion there exist
arbitrarily ≤T -complex witnesses, the constructed set is Π˜ 1

1.

The idea:

1. Well-order the set of conditions {cα |α < ω1}.
2. If Aα ⊆ R is a partial solution and cα is not yet satisfied, show

that {x ∈ R | x satisfies cα and A ∪ {x} is a partial solution}
is cofinal in ≤T .

3. Pick such xα, and define A = {xα |α < ω1}.

Example

(V=L) There is a Π˜ 1
1 decomposition of R3 into disjoint circles.



The proof

Theorem (R.)

(V=L) There exists a Π˜ 1
1 set E ⊆ R2 for which dimH(E ) = 1 yet

for every θ we have dimH(projθ(E )) = 0.

Proof sketch.

1. Conditions are straight lines through the origin, {Lα |α < ω1}.
2. At stage α, find a candidate xα ∈ R2 which has

• high Kolmogorov complexity by itself, but
• small Kolmogorov complexity when projected onto Lβ for

all β ≤ α.

3. Show this set of candidates is cofinal in ≤T . Pick some xα.

4. (Build xα by recursion, too, essentially by Cohen forcing.)

5. By Π˜ 1
1-recursion, the set {xα |α < ω1} is Π˜ 1

1; by the
point-to-set principle, it has the desired properties.



By enumerating over suitable oracles (and more coding) one can
even show the following:

Theorem (R.)

(V=L) For every ϵ ∈ (0, 1) there exists a Π˜ 1
1 set E ⊆ R2 for which

dimH(E ) = 1 + ϵ yet for every θ we have dimH(projθ(E )) = ϵ.

This is optimal by classical facts of geometric measure theory (e.g.
Hausdorff dimension cannot drop by more than 1 under projection).



One final example: Erdős-Volkmann Ring Problem

Theorem (Edgar-Miller-Bourgain)

Suppose R ⊆ (R,+,×) is a proper subring. If R is Σ˜ 1
1 then either

dimH(R) = 0 or R = R.

Theorem (Davies-Mauldin)

(CH) For every s ∈ (0, 1), there exists a proper subring R ⊆ R
such that dimH(R) = s. Under (V=L), this subring is Σ˜ 1

2.
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Conclusions

An example of multiple ideas of definability and complexity coming
together:

• set theory ←→ regularity properties
• to characterise them—and other objects in classical
mathematics—use computability theory
• locally: point-to-set principle for Hausdorff dimension, packing

dimension; continuity for functions between polish spaces
• globally: placement of objects in hierarchies, e.g.

Borel/projective hierarchy, arithmetic hierarchy, to prove
provability

• many other examples beyond descriptive set theory: e.g.
reverse mathematics, computable structure theory



Thank you



Computability in Analysis

A Cauchy name for x ∈ R is a sequence (xi )i of rationals which
converges quickly: (∀n)(∀m ≥ n)(|xm − x | < 2−n).

Definition

A function f : R→ R is computable if there exists P such that:
whenever (xi )i is a Cauchy name of x ∈ R then

P(xi )i (n) = qn ∈ Q such that |qn − f (x)| < 2−n.

Theorem

Every computable function is continuous.

Every continuous function is computable relative to some oracle.
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Computability in Topology

Theorem

A set A ⊆ R is Σ˜ 0
1+α iff there exists P and an oracle Z such that

for all x ∈ R we have: x ∈ A ⇐⇒ P(x⊕Z)(α)
halts in finite time.

Proof by picture of case α = 0 (omit oracle).

Want: A is open iff there exists P such that x ∈ A ⇐⇒ Px halts.
(⇐):

R
-4 -3 -2 -1 0 1 2 3 4

( )( )( )( )
⊆
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(⇒):

R
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( )
=
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