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Question

When will it next snow in Messina?

Ideally, we could find out without waiting for snow, but still in
finite time; the problem is computable.

If it’s not computable, we’d have to wait forever to find out...

Key insight: ask an oracle!

Definition

A real A ∈ 2ω computes B ∈ 2ω (B ≤T A) if there exists a
program which can determine membership of B from finitely many
questions to A.

Key property: the use-principle. Computations stop in finite time!
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Famously, reals encode information about arithmetic
(MRDP-theorem), but they can code much more (there’s a whole
field dedicated to what reals can code in computable structure
theory)!

Most universally, reals code sets:

Lemma (Sacks)

Every set a ∈ H(ω1) can be coded by a real x ∈ 2ω.



Set-theoretical Structures in Topology

Roitman’s Model Hypothesis is an axiom due to J. Roitman (2011)
to settle variants of the box product problem (is Rω under the box
topology normal?).

Paul. E. Cohen’s Pathways (1979) are a sequence of sets of reals,
whose existence implies the existence of P-points.

Recently, Barriga-Acosta, Brian, and Dow related these two.
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f3 . . . ωω

Roitman’s Models:

M0

M1
f1 f2
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f3 . . . H(ω1)

The fundamental sequences grow more and more complicated!
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Definition (P. E. Cohen’s Pathways PE)

There exists a cardinal κ and an increasing sequence of
sets (Aα)α<κ such that:

• Aα ⊂ ωω

• ⋃
α<κ Aα = ωω

• for every α, there exists f ∈ Aα+1 such that if g ∈ Aα

then f ̸<∗ g

• Aα is a Turing ideal

Call the sequence (fα+1)α<κ the fundamental sequence.
The fundamental sequence traces the structure ωω.
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From Models to Reals

Theorem (Barriga-Acosta, Brian, Dow)

MH implies PE.

They also show:

• MH =⇒ PE =⇒ P-points exist, so ZFC ̸⊢ PE,MH

• Neither MH nor PE is equivalent to “P-points exist”.

• There are many ccc forcings which give PE, in a sense via MH.
(If MH is baked into the forcing, then we get PE.)

Can we go the other way?



Does PE imply MH?

On the face of it, the answer ought to be no.

• Pathways are Turing ideals:
closed downwards under ∆1 definability.

• Roitman’s Models are elementary substructures of H(ω1):
closed under Σn definability for all n.

The problem

There’s no use-principle for Σ2, Σ3, Σ4, . . . reductions.

By assuming more of our pathways, we can still build models.



Structures Induced by Sets of Reals

A0

A1
f1 f2

A2

A3

f3 . . . ωω

Instead of a finite use-principle, we take an “infinite” use-principle
via hyperarithmetic reducibility (Kleene):

x ≤h y ⇐⇒ x ∈ Lωy
1
[y ] ∩ ωω

There is a computability-theoretic interpretation:

x ≤h y ⇐⇒ some countable jump of y computes x .

So, we capture all ∆1-, Σ2-, Σ3-, . . . truths and more!



For a set A ⊆ ωω, define

LA :=
⋃
x∈A

Lωx
1
[x ].

E.g. for A = {x0, x1, x2, x3, x4, . . . }:

x0

x1

x2

x3

x4

{a ∈ H(ω1) | ∃y ≤h x4 (y codes a)}

Since LA ⊂ H(ω1), this is our “induced” structure.
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We must extend it to an elementary substructure of H(ω1).
A = {x0, x1, x2, x3, x4, . . . }
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a ≤
h x
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w0

w1

w2

w3

Suppose H(ω1) ⊨ ∃xφ[x , a] for a ∈ LA.

Each wi codes a witness for φ.
The set of witnesses is always projective:

Lemma (Folklore)

A ⊆ ωω is Σ1
n+1 if and only if it is Σn over (H(ω1),∈).
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To guarantee that nice witnesses exist, assume:

1. Aα is not only a Turing ideal, but a HYP-ideal
(i.e. it’s closed under ≤h).

2. The fundamental sequence (fα+1)α<κ grows much more
complicated
(i.e. it avoids domination by ∆1

n-reals) .

Call this a (∗)-pathway.

Using a Basis Lemma due to Moschovakis and projective
determinacy PD, (∗)-pathways satisfy:

Lemma

Given LAα , if H(ω1) ⊨ ∃xφ[x , a], then there is a code for a witness
of φ which does not dominate fα+1.
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(assuming PD and (∗)-pathways)

Theorem (R.)

(PD) If there is a (∗)-pathway, then MH holds.
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Questions

• Can PD be weakened?

• Can closure under HYP be eliminated?

• Can the growth be weakened from “much more complicated”
to “more complicated”?

Thank you
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