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Question (Erdős-Volkmann-Ring Problem)

Is there a subring R of (R,+,×, 0, 1) such that dimH(R) ̸= 0, 1?

Question

What does this mean?

Descriptive set theory can answer questions about provability.



Fact

Every subset of R has a Hausdorff dimension.

This dimension can be computed via prefix-free Kolmogorov K
complexity and information density: for x ∈ 2ω define

dim(x) = lim inf
n→∞

K (x↾n)
n

.

J. Lutz and N. Lutz proved the following general identification:

Theorem (J. Lutz, N. Lutz (2018))

For every A ⊆ R we have

dimH(A) = min
B∈2ω

sup
x∈A

dimB(x).



Definition

An uncountable set A ⊆ R has the perfect set property (PSP) if it
contains a non-empty perfect subset.

Question

Is there an uncountable set A ⊆ R which does not contain an
uncountable subset?

Answer

It’s complicated.
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Theorem (P. Erdős, B. Volkmann, 1966)

For every α ∈ (0, 1) there exists a Borel subgroup G ⊆ (R,+) for
which

dimH(G ) = α.

This means, G as a subset of R is a Borel set.

Question

What about subrings of R?



Theorem (Edgar-Miller, 2001; Bourgain, 2003)

If R ⊆ (R,+,×, 0, 1) is an analytic (i.e. Σ˜ 1
1) subring then:

• either dimH(R) = 0

• or R = R.

This means, R as a subset of R is an analytic set.



Theorem (R. D, Mauldin, 2016 (R. O. Davies, 1984))

(CH) For every α ∈ (0, 1) there exists a subring R ⊆ (R,+,×, 0, 1)
such that

dimH(R) = α.

In fact, R is a subfield. It cannot be Σ˜ 1
1.

Mauldin comments: V=L implies the subring can be made Σ˜ 1
2.

Question

What is the descriptive complexity of such a subring?
Assuming V=L, can it be Π˜ 1

1?



Fact

If A ⊆ R satisfies dimH(A) = α then there exists a Gδ set D ⊆ R

dimH(D) = α and A ⊆ D.

A

D

Fact

If A is not contained in any Gδ set of Hausdorff dimension less
than α, then dimH(A) ≥ α.
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Generalising an idea of Erdős, K. Kunen, and Mauldin (1981), and
A. Miller (1989):

Theorem (Z. Vidnyánszky, 2014)

(V=L) Let P ⊆ 2ω be uncountable Borel. If F ⊆ Rω × 2ω × R
is Π˜ 1

1 and for every (A, p) ∈ Rω × 2ω, the section F(A,p)
is cofinal in ≤T , then there exists a Π˜ 1

1 set R ⊆ R such
that

P = {pβ |β < ω1} and R = {xβ |β < ω1} and xβ ∈ F(R↾β ,pβ).
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Theorem (R.)

For α ∈ (0, 1), the set

{c | c is a Gδ Borel code for A and dimH(A) ≥ α}

is Σ˜ 1
1-complete.

Corollary

For α ∈ (0, 1), the set

{c | c is a Gδ Borel code for A and dimH(A) < α}

is Π˜ 1
1-complete.



Proof (hardness)
Reduce a tree T on ω to a suitable Borel code. The idea:

• A path x ∈ [T ] yields an infinite sequence of nested intervals:

⟨1, 2, 3, . . . ⟩ 7→ ⟨(0.1, 0.2), (0.12, 0.13), (0.123, 0.124), . . . ⟩

• These can be placed on distinct levels in the Borel code:
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Proposition (R.)

Fix α ∈ (0, 1). Any infinite path x ∈ [T ] codes a Gδ set Ax ⊂ R
such that dimH(Ax) ≥ α.
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Proof (membership)

Definition

B ∈ 2ω is a Hausdorff oracle for A ⊆ R if

dimH(A) = sup
x∈A

dimB(x).

Let A be Gδ. Using the point-to-set principle,

dimH(A) ≥ α ⇐⇒ (∀n < ω)(∃x ∈ A)
(
dimB(x) > α− 2−n

)
where B is a Hausdorff oracle for A.



Fact

If A ⊆ R satisfies dimH(A) = α then there exists a compact
set K ⊆ A such that

dimH(K ) = α and K ⊆ A.

Every compact set K is effectively compact relative to some
oracle B; then, B is a Hausdorff oracle for K (J. Hitchcock,
J. Lutz; D. Stull). Thus,

dimH(A) ≥ α ⇐⇒
(∃K compact)(∀n < ω)(∃B)(∃x ∈ K )(

K ⊆ A ∧ B is Hausdorff for K ∧ dimB(x) > α− 2−n
)
.

Proposition (R.)

This clause is Σ1
1 in the Borel code of A.



What about a “direct” construction?

• What are the conditions?
By the previous theorem, the set of all sufficiently simple Gδ

sets is Π˜ 1
1 complete, hence not Borel, hence too complicated.

• Can one build R real by real, by the point-to-set principle?
This is difficult to apply since we must close under + and ×.
And since Q ⊂ R, we cannot make use of compactness.

• Even then, we add countably many reals at every step.
For every x we enumerate into our subring, we must close
under all ring-theoretic operations, which yields (under CH)
countably many reals to add. A Π˜ 1

1 basis B gives a Σ˜ 1
2

subring R:

x ∈ R ⇐⇒ (∃y ∈ B)(x is generated by y).
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[We] state these results in terms of Borel sets because that
is how much we can prove in ZFC, but they are not really
about Borel sets. All of this holds for all constructible sets
in L(R) if one assumes the large-cardinal hypothesis and
for all sets if one assumes [...] AD and forgets about the
axiom of choice.

A. Montalbán on Martin’s conjecture

NAMS 66(8), 2019

Thank you
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