Computability, Complexity, and Some Algebra

Linus Richter

Victoria University of Wellington

NZMASP 2019, Christchurch

Linus Richter

Computability Theory

NZMASP 2019, Christchurch 1 / 14

3

(日) (同) (日) (日) (日)

First-order logic

Definability allows us to formalise computability in the language of mathematics, and extend its concepts to non-computable relations.

(日) (同) (三) (三)

First-order logic

Definability allows us to formalise computability in the language of mathematics, and extend its concepts to non-computable relations.

First-order formulas are made up of the **logical symbols** \land (and), \lor (or), \neg (not), \rightarrow (implies), \exists , \forall (quantifiers), equality, and **variables**. A **language** \mathcal{L} is a set of relation, function, and constant symbols, which can be used in formulas.

Example

The language of groups, \mathcal{L}_{groups} , is given by (*, e).

$$\forall x \exists y \ (x * y = e)$$

is a sentence in the language of groups, expressing every group element has an inverse.

Take the language $\mathcal{L} = (+, \cdot, <, 0)$ as modelled by the natural numbers \mathbb{N} . Is the following true?

x = 0

3

Take the language $\mathcal{L} = (+, \cdot, <, 0)$ as modelled by the natural numbers \mathbb{N} . Is the following true?

x = 0

A variable is called **free** is it is not bound by any quantifier. A **sentence** is a formula with no free variables.

(日) (同) (三) (三)

Take the language $\mathcal{L} = (+, \cdot, <, 0)$ as modelled by the natural numbers \mathbb{N} . Is the following true?

x = 0

A variable is called **free** is it is not bound by any quantifier. A **sentence** is a formula with no free variables.

Example

The formula

 $\forall x (x = 0)$

is a sentence.

The formula

$$\exists y < x \ (x = y \cdot y)$$

is not a sentence (the variable x is free).

Quantifiers of the form $\exists x < y$ and $\forall x < y$ are called **bounded**.

(日) (同) (日) (日) (日)

We can classify formulas based on their syntax (i.e. appearance):

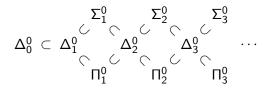
- A formula φ only containing bounded quantifiers (in terms of Turing machines, finite search) is called Δ₀⁰
- $\exists x \varphi \text{ is called } \Sigma_1^0$
- $\forall x \varphi$ is called Π_1^0

Only unbounded quantifiers increase complexity. Some Σ_1^0 formulas are equivalent to a Π_1^0 formula; these are called Δ_1^0 .

We can classify formulas based on their syntax (i.e. appearance):

- A formula φ only containing bounded quantifiers (in terms of Turing machines, finite search) is called Δ₀⁰
- $\exists x \varphi$ is called Σ_1^0
- $\forall x \varphi$ is called Π_1^0

Only unbounded quantifiers increase complexity. Some Σ_1^0 formulas are equivalent to a Π_1^0 formula; these are called Δ_1^0 .



This is the **arithmetical hierarchy**.

イロト 不得下 イヨト イヨト 二日

Formal languages allow us to formally express properties of structures, and classify their complexity. Consider the natural numbers \mathbb{N} .

Example

• 0 is the additive identity (Π_1^0) :

$$\forall a (a + 0 = a \land 0 + a = a)$$

• there is an element whose square equals its sum (Σ_1^0) :

$$\exists a (a + a = a \cdot a)$$

Some properties are *not* first-order definable:

 completeness of the real numbers is a property of subsets, and cannot be captured by a first-order formula; it needs universal quantification over subsets (this is called a Π¹₁ formula)

Second-order logic allows quantification over subsets; their definitons are not arithmetical.

Linus Richte

Fact

Every formula with a free variable defines a unique set of natural numbers.

So, we may identify each formula with its associated set of natural numbers.

3 ×

Fact

Every formula with a free variable defines a unique set of natural numbers.

So, we may identify each formula with its associated set of natural numbers.

Example

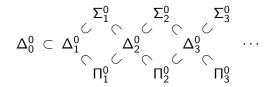
Let x be a free variable.

•
$$\forall y \ (x < y \lor x = y)$$
 defines the set $\{0\}$

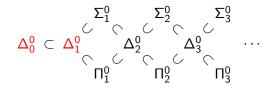
- **2** $\exists y \ (x = y + y)$ defines the even numbers
- $\forall y \ (x \neq y + y)$ defines the odd numbers
- $\exists y, z < x \ (y \neq x \land z \neq x \land x = y \cdot z)$ defines the composite numbers

くほと くほと くほと

How does this relate to computability?

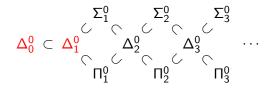


How does this relate to computability?



The arithmetical hierarchy

How does this relate to computability?



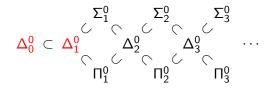
The sets defined by Δ_0^0 and Δ_1^0 formulas are called **computable**.

Linus Richter		

- 本間 と 本語 と 本語 と

The arithmetical hierarchy

How does this relate to computability?



The sets defined by Δ_0^0 and Δ_1^0 formulas are called **computable**.

This captures our intuition about Turing machines: computable sets are exactly those that are computable by a Turing machine.

Theorem

A function $f : \mathbb{N}^n \to \mathbb{N}$ is computable iff the graph of f is Δ_1^0 -definable.

Linus Richter

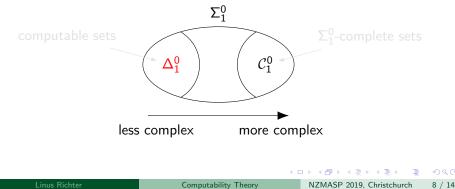
3

イロト イヨト イヨト イヨト

Definition

A set X is called Σ_1^0 -complete if it is Σ_1^0 and membership in every other Σ_1^0 set can be determined using knowledge of X.

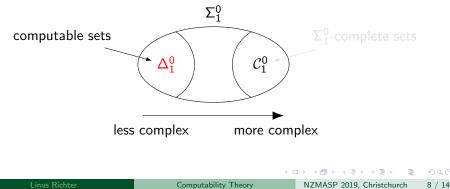
A complete set is hardest to describe in its class.



Definition

A set X is called Σ_1^0 -complete if it is Σ_1^0 and membership in every other Σ_1^0 set can be determined using knowledge of X.

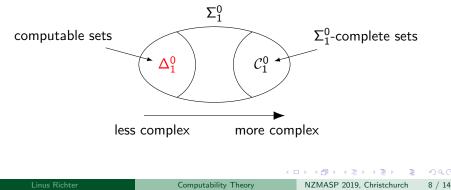
A complete set is hardest to describe in its class.



Definition

A set X is called Σ_1^0 -complete if it is Σ_1^0 and membership in every other Σ_1^0 set can be determined using knowledge of X.

A complete set is hardest to describe in its class.



Fact

No Σ_1^0 -complete set is computable.

So a Σ_1^0 -complete set is more difficult to describe than a computable set; and thus so is determining membership in it.

An application to algebra

A group is **free abelian** if it behaves like a direct sum of copies of the integers.

Example

• Z

• $\{n + mi : n, m \in \mathbb{Z}\}$, the Gaussian integers

Linus Richter		

★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

An application to algebra

A group is **free abelian** if it behaves like a direct sum of copies of the integers.

Example

• Z

• $\{n + mi: n, m \in \mathbb{Z}\}$, the Gaussian integers

Fact

A group *G* is free abelian iff it has a basis. So there is a linearly independent set $B \subset G$ such that every element of *G* is a finite linear combination of elements of *B*, and that combination is unique.

A basis for the integers is $\{1\}$, the Gaussian integers have basis $\{1, i\}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Question

Let G be (the graph of) an uncountable group. How difficult is it to determine whether G is free abelian?

Linus Richter					

< 67 ▶

Question

Let G be (the graph of) an uncountable group. How difficult is it to determine whether G is free abelian?

We have an upper bound on the complexity:

 $\exists X \subset G(X \text{ is a basis})$

So the complexity is at most Σ_1^1 . This is **second-order**: we existentially quantify over subsets of *G*, not just its elements.

Is there a simpler definition?

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Greenberg, Turetsky, Westrick)

Let κ be an uncountable successor cardinal. Under some set-theoretic assumptions, the collection of free abelian groups of universe κ is Σ_1^1 -complete.

Defining the collection of uncountable free abelian groups is difficult – it cannot be done by a formula that only ranges over the elements of the (graph of) the group!

Theorem (Greenberg, R, Shelah, Turetsky)

Let κ be an uncountable regular cardinal. There exists a computable free abelian group of universe κ without definable bases.

We can keep the group operation simple (i.e. computable) but make finding a basis difficult.

Linus Richte	

くほと くほと くほと

Thank you

э

<ロ> (日) (日) (日) (日) (日)