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What is computability theory? First-order logic

First-order logic

Definability allows us to formalise computability in the language of
mathematics, and extend its concepts to non-computable relations.

First-order formulas are made up of the logical symbols ∧ (and), ∨
(or), ¬ (not), → (implies), ∃, ∀ (quantifiers), equality, and variables. A
language L is a set of relation, function, and constant symbols, which can
be used in formulas.

Example

The language of groups, Lgroups, is given by (∗, e).

∀x ∃y (x ∗ y = e)

is a sentence in the language of groups, expressing every group element
has an inverse.
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What is computability theory? First-order logic

Take the language L = (+, ·, <, 0) as modelled by the natural numbers N.
Is the following true?

x = 0

A variable is called free is it is not bound by any quantifier.
A sentence is a formula with no free variables.

Example

1 The formula
∀x (x = 0)

is a sentence.

2 The formula
∃y < x (x = y · y)

is not a sentence (the variable x is free).

Quantifiers of the form ∃x < y and ∀x < y are called bounded.
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What is computability theory? First-order logic

We can classify formulas based on their syntax (i.e. appearance):

A formula ϕ only containing bounded quantifiers (in terms of Turing
machines, finite search) is called ∆0

0

∃x ϕ is called Σ0
1

∀x ϕ is called Π0
1

Only unbounded quantifiers increase complexity. Some Σ0
1 formulas are

equivalent to a Π0
1 formula; these are called ∆0
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This is the arithmetical hierarchy.
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What is computability theory? First-order logic

Formal languages allow us to formally express properties of structures, and
classify their complexity. Consider the natural numbers N.

Example

0 is the additive identity (Π0
1):

∀a (a + 0 = a ∧ 0 + a = a)

there is an element whose square equals its sum (Σ0
1):

∃a (a + a = a · a)

Some properties are not first-order definable:

completeness of the real numbers is a property of subsets, and cannot
be captured by a first-order formula; it needs universal quantification
over subsets (this is called a Π1

1 formula)

Second-order logic allows quantification over subsets; their definitons are
not arithmetical.
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What is computability theory? First-order logic

Fact

Every formula with a free variable defines a unique set of natural numbers.

So, we may identify each formula with its associated set of natural
numbers.

Example

Let x be a free variable.

1 ∀y (x < y ∨ x = y) defines the set {0}
2 ∃y (x = y + y) defines the even numbers

3 ∀y (x 6= y + y) defines the odd numbers

4 ∃y , z < x (y 6= x ∧ z 6= x ∧ x = y · z) defines the composite numbers
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What is computability theory? The arithmetical hierarchy

The arithmetical hierarchy

How does this relate to computability?
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The sets defined by ∆0
0 and ∆0

1 formulas are called computable.

This captures our intuition about Turing machines: computable sets are
exactly those that are computable by a Turing machine.

Theorem

A function f : Nn → N is computable iff the graph of f is ∆0
1-definable.
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What is computability theory? The arithmetical hierarchy

What happens beyond computable sets?

Definition

A set X is called Σ0
1-complete if it is Σ0

1 and membership in every other
Σ0
1 set can be determined using knowledge of X .

A complete set is hardest to describe in its class.

∆0
1 C01

less complex more complex

Σ0
1

computable sets Σ0
1-complete sets
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What is computability theory? The arithmetical hierarchy

Fact

No Σ0
1-complete set is computable.

So a Σ0
1-complete set is more difficult to describe than a computable set;

and thus so is determining membership in it.
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An application to algebra Free abelian groups

An application to algebra

A group is free abelian if it behaves like a direct sum of copies of the
integers.

Example

Z
{n + mi : n,m ∈ Z}, the Gaussian integers

Fact

A group G is free abelian iff it has a basis. So there is a linearly
independent set B ⊂ G such that every element of G is a finite linear
combination of elements of B, and that combination is unique.

A basis for the integers is {1}, the Gaussian integers have basis {1, i}.
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An application to algebra Free abelian groups

Question

Let G be (the graph of) an uncountable group. How difficult is it to
determine whether G is free abelian?

We have an upper bound on the complexity:

∃X ⊂ G (X is a basis)

So the complexity is at most Σ1
1. This is second-order: we existentially

quantify over subsets of G , not just its elements.

Is there a simpler definition?

Linus Richter Computability Theory NZMASP 2019, Christchurch 11 / 14



An application to algebra Free abelian groups

Question

Let G be (the graph of) an uncountable group. How difficult is it to
determine whether G is free abelian?

We have an upper bound on the complexity:

∃X ⊂ G (X is a basis)

So the complexity is at most Σ1
1. This is second-order: we existentially

quantify over subsets of G , not just its elements.

Is there a simpler definition?

Linus Richter Computability Theory NZMASP 2019, Christchurch 11 / 14



An application to algebra Free abelian groups

Theorem (Greenberg, Turetsky, Westrick)

Let κ be an uncountable successor cardinal. Under some set-theoretic
assumptions, the collection of free abelian groups of universe κ is
Σ1
1-complete.

Defining the collection of uncountable free abelian groups is difficult – it
cannot be done by a formula that only ranges over the elements of the
(graph of) the group!
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An application to algebra Free abelian groups

Theorem (Greenberg, R, Shelah, Turetsky)

Let κ be an uncountable regular cardinal. There exists a computable free
abelian group of universe κ without definable bases.

We can keep the group operation simple (i.e. computable) but make
finding a basis difficult.
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An application to algebra Free abelian groups

Thank you
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