the convertion between souts of the

MTALR ABOUT INDÉPENDENCE, forès sina its a major adievant of set thoug and meth. logic in guerel.

Let's talk about independence proofs. "Proofs" is in the name, so let's look at those first. Pure mathematicians' number one job is to **find proofs**. They do it every day.

But: there are two types of proofs.

Most proofs are *natural proofs* (or *convincing arguments*). They follow inference rules, but are written down in English (or some other natural language), as opposed to some *formal language* and *formal reasoning*. Equally, assumptions or *axioms* are written down in natural language.

Formal proofs only work in formal languages, not in English. They are *syntactical*: they are just manipulations of symbols, there is no inherent meaning to the formulas.

Natural proofs are *semantical*. They rely on the properties of objects as described by formulas.

Luckily, this distinction doesn't really matter...

Theorem 1 (Gödel's Completeness Theorem). Every natural proof can be turned into a formal proof, and vice versa.

So we don't need to worry too much about formal proofs... Unless we want to formalise all of mathematics uniformly. That was David Hilbert's goal in 1900 – solving the *Foundational Crisis of Mathematics*.

To get an idea what he attempted, let's look at proofs, **formal and natural**. How do proofs work? We take a set of *axioms*, and then use *inference rules* to deduce new results, or *theorems*. Axioms are what we assume to be true.

Crucial is the following:

Theorem 2. Proofs are finite.

- The more we assume, the easier the proof. (extreme case: just assume what you want to prove)
- A result is stronger if its proof assumes less. Example: "If G is abelian, then the identity of G is unique."; "If n is odd, then 2n is even."
- If we assume a contradiction, we can prove anything.

Definition 3. A set of axioms is called consistent if one cannot prove a contradiction from it. So here's the goal:

Find a consistent set of axioms that proves all mathematical facts.

David Hilbert came up with this in 1900, he imposed further restrictions: there should be a machine that can check whether a mathematical statement is true or false, based on the set of axioms. And: there should be a **proof that the system is consistent**, within the system.

We can make any theory inconsistent: if S is a set of sentences, just take some sentence in S and add its negation to S. But this can also happen accidentally; maybe we added an axiom that now, in combination with the other axioms, proves a contradiction...

The foundations of mathematics should be formal, though; only then can they be formally scrutinised. Hence we look at...

1.1. The axiomatic approach.

Definition 4. A formal language \mathcal{L} is a set of function, relation, and constant symbols. Relations and functions carry an arity. The language builds well-formed formulas.

These formulas are what we call formal mathematical statements.

Do we need formal languages to do mathematics? Most certainly not. One can work with groups without referring to the "language of groups". This all works due to GCT.

But to progress, we'll need some formal stuff. Let's talk about models.

- A language builds terms.
- Terms give rise to sentences.
- Sentences are built using very strict syntactical rules. There's no meaning associated to these symbols!

For instance: $\mathcal{L} = (*, e, f)$. This is a language. We can build well-formed sentences:

- e + e = e
- f + e = e + f
- f + f + f = f + f

We may also introduce variables and quantifiers:

- $\forall x(x+e=x)$
- $\exists x \exists y (x + y = e)$
- $\forall x \exists y (x + y = e)$

Again, this does not say anything about truth of these formulas! It depends how we interpret these symbols.

Interpret \mathcal{L} so that *=+,e=0,f=1, and the model is the integers \mathbb{Z} , then some of these are true, and some are false.

Definition 5. Let S be a set of sentences. We say that M is a model of S if every sentence in S is true in M. We write $M \models S$.

We know what this means, intuitively. Take $\mathcal{L}_{Grp} = (*, e)$, the language of groups. The set of group theory axioms comprises three sentences:

• $\forall x(x*e=x \land e*x=x)$ (e is the identity) • $\forall x,y,z(x(yz)=(xy)z)$ (e is associative) • $\forall x\exists y(x*y=e \land y*x=e)$ (inverses exist)

How do we check that $\mathbb Z$ under addition is a group? We replace each e above with e and turn into e0, and then we check that all these centences are the second e1.

e into 0, and then we check that all these sentences are true – and we do this informally, which is allowed by GCT.

Equally, we see $(\mathbb{Z}, -, 0)$ is not a group; it's not associative. Or take any other counterexample here. The point is: we know intuitively what it means to be a model of a set of sentences, even though we don't spell out the definition here.

What does this have to do with formal proofs? We write $T \vdash S$ if every sentence in S is provable from T. We write $T \vDash S$ if every model of T satisfies S. Now we can restate GCT:

Theorem 6. $T \vdash S$ if and only if $T \vDash S$.

So exhibiting So if you can prove something formally, then it holds in every model (soundness). And if something holds in every model, then we can prove it formally (completeness).

Definition 7. A theory T is complete if for every sentence φ there is a proof of φ or of $\neg \varphi$ from T.

Some examples: the theory of DLOs without endpoints is complete. So e.g. $(\mathbb{R}, <)$ and $(\mathbb{Q}, <)$ are elementarily equivalent. **Presburger arithmetic**; weak theory of elementary number theory including addition but not multiplication, that is also consistent and decidable.

Is group theory complete? No. Some groups are commutative (the abelian ones), and some are not. So the formal sentence "the structure is commutative" is neither proven nor refuted from the axioms of groups. certed independent.

Here is an example from geometry: Euclid's postulates of geometry:

- (1) A straight line may be drawn between any two points:
- (2) Any terminated straight line may be extended indefinitely:
- (3) A circle may be drawn with any given center and any given radius;
- (4) All right angles are equal;

(5) Let L be a line and P be a point not on L. Then there is exactly one line L' such that L, L' do not intersect.

Euclid lived 300BC!

This *Parallel Postulate* is independent of (1) to (4). Non-Euclidean geometry was the result, its existence deduced in 1823. Euclid tried to prove this one, but couldn't so he added it as an axiom – it is needed to prove that the sum of angles in a triangle (in Euclidean geometry) is 180.

Or in the **theory of fields**: "There exists x such that x * x = 1 + 1" cannot be proven from the field axioms. \mathbb{R} satisfies it, but \mathbb{Q} doesn't. Clearly, both are fields.

The natural question now:

Can we make a theory complete by adding enough axioms?

No, not in general. Look at Peano arithmetic, or PA, that models elementary number theory as well as induction. Much stronger than Presburger arithmetic. The language is $(+,\cdot,S,<,0)$. The standard model of PA is N, the natural numbers.

Theorem 8 (Gödel's First Incompleteness Theorem, simplified). PA is incomplete.

Corollary 8.1. Every theory that can interpret PA is incomplete..

So Hilbert's dream is dead. Any reasonable formalisation of mathematics should really include elementary number theory – but then it will be incomplete.

Here's an outline, all proved in PA: we can code formulas by numbers (effectively): for any formula φ , let φ be its code.

Theorem 9 (Fixed Point Lemma). If $\varphi(v)$ is a formula with one free variable v, then there is ψ such that $PA \vdash \psi \leftrightarrow \varphi(\psi)$.

So to check whether ψ holds, we just need to check whether $\varphi(\underline{\psi})$ holds. Now, apart from formulas, we can also code proofs, and logic within the theory. Hence we have a computable predicate

with two free variables v, w which expresses that v codes a proof of the formula coded by w. Now consider the formula

$$\neg \exists x \, \text{IsProofOf}(x, w)$$

where w is free. Hence, by the fixed point lemma, there is a formula ψ such that

$$\mathsf{PA} \vdash \psi \leftrightarrow \neg \exists x \, \mathsf{IsProofOf}(x, \psi).$$

Now suppose $PA \vdash \psi$. Then there is a proof of ψ , yet PA proves there is no proof. Contradiction.

Equally, if PA $\vdash \neg \psi$ then PA proves $\exists x \text{ IsProofOf}(x, \underline{\psi})$, so there is a proof of ψ from PA. Contradiction.

We call $\psi = \beta_{PA}$ the Gödel sentence of PA.

But this is quite contrived, isn't it?

Takeaway: independent statements exist, and we have seen many of them:

- the Gödel sentence (in any reasonable and sufficiently strong theory):
- being abelian in the theory of groups;
- solving the equation $X^2 2 = 0$ in the theory of fields;

and many more.

And: any theory that formalises (elementary) number theory is necessarily incomplete.

Crucially: we show independence by exhibiting models. And once we have done so, we can stop looking for proofs.

Let's now look for some interesting independence results in set theory.

2. Set Theory

Why set theory? It was an early candidate for providing foundations for mathematics. Early natural attempts at formalising what it means to be a set failed.

Theorem 10. Naive set theory is inconsistent.

Proof. What we mean by naive here is exemplified in what is now known as Russell's paradox. Let $S = \{x \mid x \notin x\}$. Now we have

$$S \in S \leftrightarrow S \not\in S$$

a contradiction.

In some sense, naive set theory is not restrictive enough. We resolve this by formalising things, by introducing the formal language of set theory.

We put forward: Axiomatic set theory, which should really be called *Universe theory*.

In this theory, elements of its structures are called sets. There is one relation symbol: \in . The set of axioms we pick is called ZFC. Just like groups: we have a set of axioms, we are interested in models.

What do we expect from sets? For instance:

- x = y iff they have the same elements;
- if x, y are sets then so should be $\{x, y\}$;
- if x is a set, then its power set should exist;
- if x is a set, then the set containing all the elements of x, i.e. $\bigcup x$ should exist;
- if x is a set and φ is a property, then $\{y \in x \mid \varphi(y)\}$ is a set;
 - infinite sets should exist.

...as well as Choice:

Definition 11. The Axiom of Choice states the following: if $\{X_i \mid i \in I\}$ is a set of non-empty sets, then there is a function f defined on I such that $f(i) \in X_i$.

ZFC does all that. But ZFC does even more.

2.1. Theorems of ZFC. ZFC covers ordinary mathematics: one can formalise elementary number theory, analysis, etc. Virtually every mathematical object is formalisable in ZFC. As a consequence, the Gödel sentence β_{ZFC} will be independent of ZFC. So ZFC is incomplete.

Here are some theorems of ZFC:

Theorem 12. Every set has a size, a cardinality: we can assign to any set a unique set called a cardinal. Cardinals are well-ordered.

There are infinitely many cardinals. The finite ones are just the natural numbers. $0, 1, 2, 3, \ldots$. The least infinite cardinal is called \aleph_0 . Every set that is in bijection with $0, 1, \ldots$ is called finite; in bijection with \aleph_0 is called countably infinite; in bijection with $\kappa > \aleph_0$ is called uncountable.

Theorem 13. $|\mathbb{N}| = \aleph_0$.

Not all sets are countable.

Theorem 14 (Cantor's Theorem). $|\mathcal{P}(x)| > |x|$.

wood land

Son Sons

my Janes

This is obvious for finite sets, but not for infinite ones. This extends our hierarchy: we have $0 < 1 < \ldots < \aleph_0 < \aleph_1 < \ldots$

with a lot of structure omitted. But all cardinals appear in this hierarchy, and the hierarchy is linearly ordered!

There is a nice characterisation of the size of the reals.

Theorem 15. $2^{\mathbb{N}} = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$.

What is the value of PON

[P(IN)]? But what is it?

2.2. Models of ZFC. Let us assume ZFC is consistent.

What does a model of ZFC look like? Everything ZFC proves to be true is true in such a model. For example: $\mathsf{ZFC} \vdash$ "there is an uncountable set". Thus if M models ZFC then M contains an uncountable set. Not so fast...

Theorem 16 (Downward Skolem-Löwenheim-Theorem). If $M \models T$ where M is infinite, and the language of T is countable, then there is a countable model M' of T.

So if $M \models \mathsf{ZFC}$ then Skolem-Löwenheim implies there is a countable model. But it is a theorem of ZFC that there are sets that are not countable. What is going on?

M contains a set that it "believes" is uncountable. So, by definition: if there is no injection from $\mathbb N$ into x in M then M thinks x is uncountable. But, from the outside, we know that x is not "actually" uncountable.

Draw V, and indicate a model M.

This is called Skolem's paradox.

V is the actual universe, that contains all the actual objects of mathematics. M contains things that it believes are the real numbers, is the power set of the naturals, etc. **Distinction:** \mathbb{R} **versus** \mathbb{R}^M .

We have seen that ZFC is incomplete: the Gödel sentence is an example. Are there other examples?

Yes! Choice itself is independent of ZF.

1938, Göper

Theorem 17. If ZF is consistent, then so is ZFC.

The model exhibited by Gödel that proves this is called the *constructible universe*, found in 1938. So by GCT, there cannot be a proof of $\neg AC$ from ZF. Could there be a proof of AC from ZF?

Theorem 18. If ZF is consistent, then so is $ZF+\neg AC$.

This is a result of Paul Cohen in 1963. So: There is no proof of AC and there is no proof of ¬AC from ZF. He employed forcing, which we shall look at soon.

Let's first look at some interesting consequences of this independence.

- 2.3. If Choice fails. Some statements of ordinary mathematics are equivalent to AC:
 - Tychonoff's theorem;
 - Trichotomoy of cardinalities;
 - Every vector space has a basis;
 - Every connected graph has a spanning tree.

Since there is a model of $ZF + \neg AC$, there is a model of set theory that can formalise virtually all of mathematics in which there is a collection of compact topological spaces whose product is not compact.

/voll

The State of the s

3. Forcing

We assume that ZFC is consistent. This gives rise to relative consistency results.

We learned that $0 < 1 < 2 < ... < \aleph_0 < \aleph_1 < \aleph_2 < ...$ We also know that $|\mathcal{P}(\mathbb{N})|$ \aleph_0 . What is the value of 2^{\aleph_0} ? It must be a cardinal... but which one is it?

The Continuum Hypothesis says that $\mathcal{P}(\mathbb{N})| = |\mathbb{R}| = \aleph_1$.

What does that mean? If $S \subset \mathbb{R}$ then S has a cardinality (by AC). So if S is infinite then either $|S| = \aleph_0$ or $|S| = |\mathbb{R}| = \aleph_1$. So there is no set of intermediate cardinality.

Theorem 19. The constructible universe satisfies CH. So if ZFC is consistent so is ZFC + CH.

Hence there is no proof of $\neg CH$ from ZFC. But is there a proof of CH?

3.1. What is forcing? We know what to do: to show that there is no proof of CH from ZFC, it suffices to find a model of ZFC in which CH fails. How can we do that?

Think of field extensions. Q is a field, yet it does not satisfy the sentence

$$\exists x(x*x=1+1)$$

but we can extend \mathbb{Q} (using ring theory, namely the right irreducible polynomial, so its ideal is maximal, so the quotient is a field) to get the extension $\mathbb{Q}[\sqrt{2}]$. Now THAT ring is also a field (so it satisfies the field axioms), but it also satisfies the sentence above.

NOTE: it is not enough to just pick $\mathbb{Q} \cup \{\sqrt{2}\}$ as this is not a ring: it's not closed under addition or multiplication. So we have to make sure the extension is in some sense closed. Ring theory tells us that

$$\mathbb{Q}[X]/\langle X^2 - 2 \rangle = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$$

and this is a nice description of the extension.

- Two things to note:

- The field extension is indeed a field;
- \mathbb{Q} has a way of **describing** its root: it's an element that satisfies $X^2 2 = 0$, which is describable in $\mathbb{Q}[X]$.

So now take a nice model M of ZFC: countable and transitive. We want to extend it so that it fails CH. What does that mean? We need an extension N such that

$$N \vDash |\mathcal{P}(\mathbb{N})| > \aleph_1.$$

So if we can somehow find an extension $N \supset M$ that adds enough subsets of the natural numbers, then we are done.

Let's start off by adding one subset first. Every subset of the naturals can be expressed as Es: (0/10/1/0/1/...) an N-sequence of natural numbers. Hence

$$\mathcal{P}(\mathbb{N}) \cong 2^{\mathbb{N}}$$

3.2. Cohen Forcing. Consider the set of finite partial functions from ω to $\{0,1\}$. We denote this set by P. These are approximations to some new object, that we shall call generic.

Definition 20. For finite partial functions $p, q \in \mathbb{P}$, we say $p \leq q$ (has less freedom) iff $q \subset p_q$

Each subset of $\mathbb N$ that is in M is a union of such finite partial functions. But we know that $\mathcal{P}(\mathbb{N})^M$ is countable (viewed from the outside). So M misses subsets.

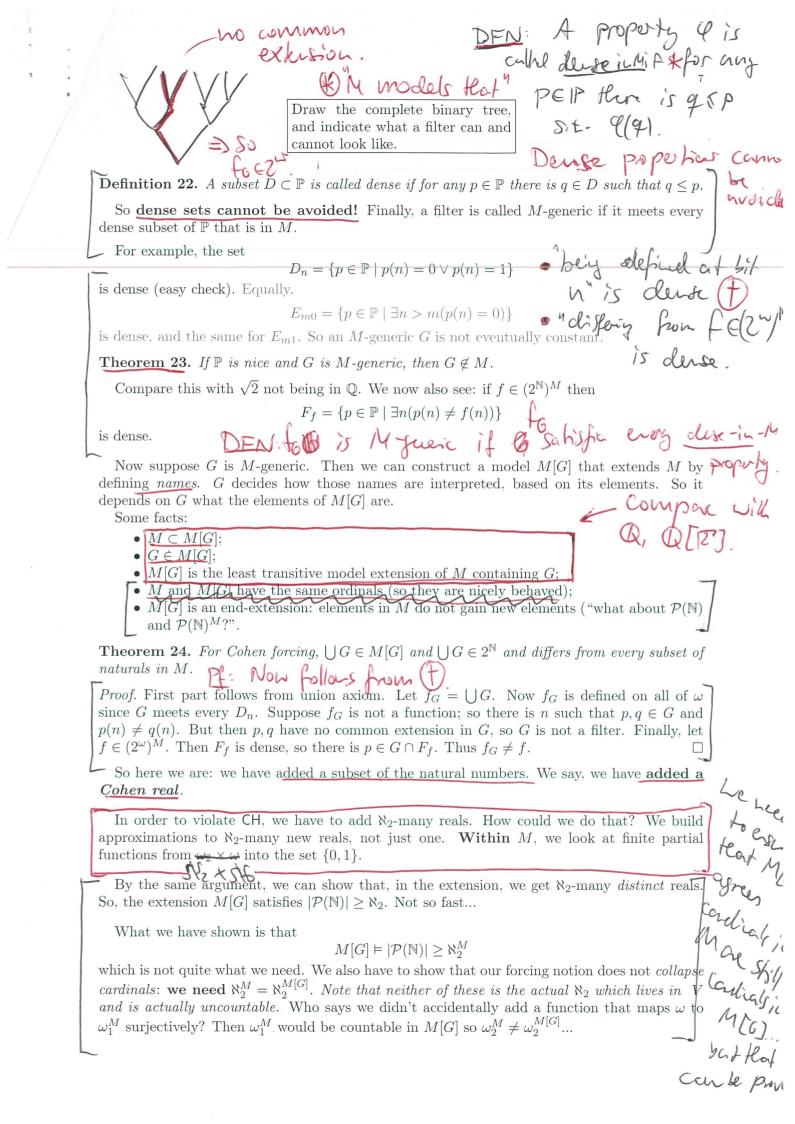
This is like: Q thinks it contains "all the numbers", when it evidently doesn't (in a sense):

 $\mathbb{Q} \subset \mathbb{R}$.

Definition 21. A subset $G \subset \mathbb{P}$ is a filter if:

- $p \in G$ and $p \leq q$ then $q \in G$;
- $p, q \in G$ then there is $r \in G$ such that $r \leq p, q$.

{finik big Shigs}=P.



8

But this follows from the *countable chain condition*, and is shown combinatorially. This completes the proof:

Theorem 25. If ZFC is consistent, then so is $ZFC+\neg CH$.

Set-theoretical forcing is **versatile**: almost any partially ordered set can be a forcing notion. And different forcing notions yield different properties of the generics (computability theory: *n*-generics, for example).

Some relative consistency results due to forcing. Assuming consistency of the ZFC-fragment, also consistent is:

- ZFC +¬GCH (follows straight from the above);
- $\mathsf{ZF} + V \neq L$:
- ZF + LM (Solovay model; every set of reals is Lebesgue measurable; cannot satisfy AC since Vitali's construction uses AC to find sets that aren't measurable; this actually also needs an inaccessible (so large) cardinal axiom);
- Kleene-Post theorem; the fact that there are incomparable Turing degrees is essentially a forcing argument (but predates Cohen's results, so wasn't immediately recognised as such).

Note that models of all of these theories still model all of mathematics!

Limitations of forcing: we can only add sets, not take any away; we are looking at extensions after all. So for example, we will never be able to turn a countable set uncountable.

But its power lies in its **combinatorial** structure, and the fact that we can define partial orders ad hoc whenever needed, and use its conditions as approximations to build the generic we need.