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Let’s talk about independence proofs. “Proofs” is in the name. so let’s look at those first.
Pure mathematicians’ number one job is to find proofs. They do it every day.

But: there are two types of proofs.

Most proofs are natural proofs (or convincing arguments). They follow inference rules, but are
written down in English (or some other natural language), as opposed to some formal language
and formal reasoning. Equally, assumptions or azioms are written down in natural language.

Formal proofs only work in formal languages. not in English. They are syntactical: they are
just manipulations of symbols, there is no inherent meaning to the formulas.

o Natural proofs are semantical. They rely on the properties of objects as described by formulas.
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Luckily, this distinction doesn’t really matter...

Theorem 1 (Godel’s Completeness Theorem). Every natural proof can be turned into a formal

" proof, and vice versa.

So we don’t need to worry too much about formal proofs... Unless we want to formalise all
of mathematics uniformly. That was David Hilbert’s goal in 1900 - solving the Foundational
Crisis of Mathematics.

To get an idea what he attempted, let’s look at proofs, formal and natural. How do proofs
work? We take a set of azioms, and then use inference rules to deduce new results, or theorems.
Axioms are what we assume to be true.

Crucial is the following:

Theorem 2. Proofs are finite.

e The more we assumne, the easier the proof. (extreme case: just assume what vod want
to prove)

e A result is stronger if its proof assuines less. Example: “If GG is abelian, then the identity
of G is unique.”: “If n is odd, then 2n is even.”

e If we assume a contradiction. we can prove anything.

Definition 3. A set of axioms is called consistent if one cannot prove a contradiction from it.

So here’s the goal:
Find a consistent set of axioms that proves all mathematical facts.
David Hilbert came up with this in 1900, he imposed further restrictions: there should be a
machine that can check whether a mathematical statement is true or false. based on the set of
axioms. And: there should be a proof that the system is consistent, within the system.

We can make any theory inconsistent: if S is a set of sentences. just take some sentence
in S and add its negation to S. But this can also happen accidentally; maybe we added
an axiom that now, in combination with the other axioms, proves a contradiction...

The foundations of mathematics should be formal, though; only then can they be formally
scrutinised. Hence we look at...

et

1.1. The axiomatic approach.

Definition 4. A formal language L is a set of function, relation, and constant symbols. Rela-
tions and functions carry an arity. The language builds well-formed formulas.

These formulas are what we call formal mathematical statements.
Do we need formal languages to do mathematics? Most certainly not. One can work
with groups without referring to the “language of groups”. This all works due to GCT.

But to progress, we'll need some formal stuff. Let’s talk about models.
1
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e A language builds terms. Z Fdey = ('h %/ @/ ( >,

e Terms give rise to sentences.

e Sentences are built using very strict syntactical rules. There’s no meaning associated
— to these symbols! -

For instance: £ = (*.¢, f). This is a language. We can build well-formed sentences:

e ¢ +e=¢
e fHe=c+f
s f+rf+f=f+f
We may also introduce variables and quantifiers:
® .Vl."lf(.(‘ +e=

e Jxdy(x +y =r¢)

o Vady(r+y=c¢))
Again. this does not say anything about truth of these formulas! It depends how we

interpret these symbols.

are true. and some are false.
| =

Definition 5. Let S be a set of sentences. We say that M is a model of S if every sentence in
S is true in M. We write M E S.

Interpret £ so that * = +.¢ = 0. f = 1. and the model is the integers Z, then some of t]lus‘j

We know what this means, intuitively. Take Lgr, = (%, €), the language of groups. The set ’q
of group theory axioms comprises three sentences:

e Vr(rxe=xAexx=x) (e is the identity) -?i(x-DC = ,+l a /Z\d‘()
o Vz,y, z(z(yz) = (xy)z) (x is associative) - N
o Vxdy(r+xy =eAy=*x=e) (inverses exist) - e gb L’Ué‘a =& } J 5’7\’39-/%1‘,
How do we check that Z under addition is a group? We replaceléaglll ;%ove,witll + and turn
e into 0, and then we check that all these sentences are true — and we do this informally.
which is allowed by GCT.
Equally, we see (Z, —,0) is not a group; it’s not associative. Or take any other counterexample
here. The point is: we know intuitively what it means to be a model of a set of
sentences, even though we don’t spell out the definition here.

What does this have to do with formal proofs? We write T - S if every sentence in S is
provable from 7. We write T'E S if every model of T satisfies S. Now we can restate GCT

.
Theorem 6. T+ S if and only if T S. S)" \}'YM‘ bb‘ . "\*“J&(’[S Suf

"")‘VL W\JJL

So if you can prove something formally, then it holds in every model (sounﬁ%é‘ss) And if
something holds in every model, then we can prove it formally (completeness).

Definition 7. A theory T is complete if for every sentence o there is a proof of w or of —p
from T.

Some examples: the theory of DLOs without endpoints is complete. So eg. (R, <)
and (Q, <) are elementarily equivalent. Presburger arithmetic; weak theory of elementary
number theory including addition but not multiplication, that is also consistent and decidable.

Is group theory complete? No. Some groups are commutative (the abelian ones), and
some are not. So the formal sentence “the structure is commutative” is neither proven nor

refuted from the axioms of groups. l l N N g
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Here is an example from geometry: Euclid’s postulates of geometry: T —_
1) A straight line may be drawn between any two points;

(nde may be drawn with any given center and any given radius;

I right angles are equal;

2) Any terminated straight line may be extended mdehmroh
3) ~X
1)
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(5) Let L be a line and P be a point not on L. Then there is exactly one line L’ such that
L. L’ do not intersect.

Euclid lived 300BC!

This Parallel Postulate is independent of (1) to (4). Non-Euclidean geometry was the result.
its existence deduced in 1823. Euclid tried to prove this one. but couldn’t so he added it as an
axiom — it is needed to prove that the sum of angles in a triangle (in Euclidean geometry) is
130.

Or in the theory of fields: “There exists z such that z* x = 1 + 1" cannot be proven from
the field axioms. R satisfies it, but Q doesn’t. Clearly, both are fields.

b

The natural question now:

Can we make a theory complete by adding enough axioms?

V)G SN SQAA\'(AELQ -
No, not in general. ]Loolt%ﬁ Pgnoha%hmetic, or PA, that models elementary num-
ber theory as well as induction. Much stronger than Presburger arithmetic. The language is
(+,-,5,<,0). The standard model of PA is N, the natural numbers.

Theorem 8 (Godel’s First Incompleteness Theorem, simplified). PA is incomplete.
- Jeorem o,

Corollary 8.1. Every theory that can interpret PA is incomplete..

So Hilbert's dreain is dead. Any reasonable formalisation of mathematics should really include
elementary number theory — but then it will be incomplete.

Here's an outline. all proved in PA: we can code formulas by numbers (effectively): for any

formula . let ¢ be its code.

Theorem 9 (Fixed Point Lemma). If p(¢) is a formula with one free variable v. then there is
© such that PAE < o(10).

So to check whether ¢ holds. we just need to check whether (¢:) holds. Now, apart from
formulas. we can also code proofs, and logic within the theory. Hence we have a computable
predicate

[sProofOf (v, w)
with two free variables ¢, w which expresses that ¢ codes a proof of the formula coded by w.
Now consider the formula
=3z IsProofOf (., w)
where w is free. Hence, by the fixed point lemma. there is a formula ¢ such that

PA = ¢ < =30 IsProofOf (v, ).

Now suppose PA = ». Then there is a proof of v». yet PA proves there is no proof. Contra-
diction.
Equally. if PA = =4 then PA proves Jz IsProofOf(z. ¢»). so there is a proof of ¢@ from PA.

Contradiction.

We call » = pa the Gddel sentence of PA.
But this is quite contrived, isn’t it?

Takeaway: independent statements exist, and we have seen many of them:
e the Godel sentence (in any reasonable and sufficiently strong theory);
.o being abelian in the theory of groups;
e solving the equation X2 — 2 = 0 in the theory of fields;

=
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and many more.
And: any theory that formalises (elementary) number theory is necessarily incomplete.

Crucially: we show independence by exhibiting models. And once we have done
" so, we can stop looking for proofs.

Let’s now look for some interesting independence results in set theory.

2. SET THEORY

Why set theory? It was an early candidate for providing foundations for mathematics. Barly
natural attempts at formalising what it means to be a set failed.

Theorem 10. Naive set theory is inconsistent.
Proof. What we mean by naive here is exemplified in what is now known as Russell’s paradox.
Let $ = {z |« & z}. Now we have
SeS 548
a contradiction. O

R

In some sense, naive set theory is not restrictive enough. We resolve this by formalising
things, by introducing the formal language of set theory.

e

We put forward: Axiomatic set theory, which should really be called Universe theory. ~

In this theory, elements of its structures are called sets. There is one relation symbol: €.

The set of axioms we pick is called ZFC. Just like groups: we have a set of axioms, we
are interested in models.

What do we expect from sets? For instance:

x =y iff they have the same elements;

if z,y are sets then so should be {z, y};

if z is a set. then its power set should exist;

if z is a set. then the set containing all the elements of z. i.e. |J z should exist;
if z is a set and ¢ is a property, then {y € z | ¢(y)} is a set;

infinite sets should exist.

...as well as Choice:

Definition 11. The Axiom of Choice states the following: if {X; | i € I} is a set of non-empty
sets, then there is a function f defined on I such that f(i) € X;.

W ZFC does all that. But ZFC does even more.
g*\'g \Q;,(y" 2.1. Theorems of ZFC. ZFC covers ordinary mathematics: one can formalise elementary

(y&* R>~QSC"rnumber theory, analysis. etc. Virtually every mathematical object is formalisable in ZFC.

o As a consequence, the Gddel sentence zrc will be independent of ZFC. So ZFC is incomplete.
LW
\\f

Here are some theorems of ZFC:

\N_p’*'b ~Theorem 12. Every set has a size, a cardinality: we can assign to any set a unique set called
\gﬂéﬁ a cardinal. Cardinals are well-ordered.

\)\w/ 'y There are infinitely many cardinals. The finite ones are just the natural numbers. 0,1,2,3, .. ..

A

7 AL he least infinite cardinal is called Ry. Every set that is in bijection with 0,1, ... is called finite;
QDG‘/\ in bijection with N is called countably infinite; in bijection with x > X is called uncountable.

Theorem 13. |N| = X,.
Not all sets are countable.

Theorem 14 (Cantor’s Theorem). |P(z)| > |z|.



5

This is obvious for finite sets, but not for infinite ones. This extends our hierarchy: we have
0<I<...<Ng< Ny <.

with a lot of structure omitted. But all cardinals appear in this hierarchy, and the
hierarchy is linearly ordered!

There is a nice characterisation of the size of the reals.

Theorem 15. |73(N)| = |R|. L\li— kvgﬁu LF(’N\’ > NG
What is the value of@ [?C’N‘)} 2 EU\‘J\ s oeon FI\ e b 4 { .

i . .
2.2. Models of ZFC. Let us assume ZFC is consistent.

What does a model of ZFC look like? Evervthing ZFC proves to be true is true in such a
model. For example: ZFC  * there is an uncountable set”. Thus if A/ models ZFC then Af
contains an uncountable set. Not so fast...

Theorem 16 (Downward Skolem-Lowenheim-Theorem). If M E T where M is infinite, and
the language of T is countable, then there is a countable model M' of T.

So if Al = ZFC then Skolem-Léwenheim implies there is a countable model. But
it is a theorem of ZFC that there are sets that are not countable. What is going
on?

M contains a set that it “believes™ is uncountable. So. by definition: if there is no injection

from N into . e M then A thinks 2 is uncountable. But. from the outside. we know that « is
not “actually” uncountable.

_!i)rnur T/" and-indicate q 1'nodel ]\/_[ l )

This is called Skolem’s paradox.

V' is the actual universe, that contains all the actual objects of mathematics. M contains
things that it believes are the real numbers, is the power set of the naturals etc.

ﬁstmptlon R versus RM.

o —

' e have seen that ZFC is incomplete: the Godel sentence 1s an example. Are there other
examples?

Yes! Choice itself is independent of ZF. \q's 57/ C)é N eL

Theorem 17. If ZF is consistent, then so is ZFC.

The model exhibited by Godel that proves this is called the constructible universe, found in
1938. So by GCT, there cannot be a proof of = AC from ZF. Could there be a proof of AC from
ZF?

163, ¥
Theorem 18. If ZF is consistent, then so is ZF+—- A CI C (C {?Lt N’

This is a result of Paul Cohen in 1963. So: There is no proof of AC and there is no
proof of = AC from ZF. He employed forcing, which we shall look at soon.
Let’s first look at some interesting consequences of this independence.
T§2.3. If Choice fails. Some statements of ordinary mathematics are equivalent to AC:
Tychonoft’s theorem;
Trichotomoy of cardinalities;
Every vector space has a basis;
Every connected graph has a spanning tree.
Since there is a model of ZF +- AC, there is a model of set theory that can formalise virtually
all of mathematics in which there is a collection of compact topological spaces whose product
is not compact. J

"




3. FORCING

We assume that ZFC is consistent. This gives rise to relative consistency results.

We learned that 0 <1 <2 < ... <Ry <Ny <Ny <.... We also know that IP(N)l@ >
No. What is the value of 2%0? It must be a cardinal... but which one is it? )

\!}}'\\( {, The Continuum Hypothesis says thap@WD(N” = |R|=%;.
SU

C_X( What does that mean? If S C R then S has a cardinality (by AC). So if S is infinite then
either |S| = Ry or [S| = |R| = Ni. So there is no set of intermediate cardinality.
Theorem 19. The constructible universe satisfies CH. So if ZFC is consistent so is ZFC+ CH.

Hence there is no proof of =CH from ZFC. But is there a proof of CH?

3.1. What is forcing? We know what to do: to show that there is no proof of CH from ZFC.
it suffices to find a model of ZFC in which CH fails. How can we do that?

Think of field extensions. Q is a field, yet it does not satisfy the sentence
Jr(zxx=1+1)

but we can extend Q (using ring theory, namely the right irreducible polynomial. so its ideal is
maximal, so the quotient is a field) to get the extension Q[v/2]. Now THAT ring is also a field
(so it satisfies the field axioms), but it also satisfies the sentence above.

NOTE: it is not enough to just pick QU{\/§} as this is not a ring: it’s not closed under
ddition or multiplication. So we have to make sure the extension is in some sense closed. Ring
theory tells us that

QX]/(X?—2)={a+bvV2]|a,be Q)

and this is a nice description of the extension.

Two things to note:

e The field extension is indeed a field;

e Q has a way of describing its root: it’s an element that satisfies X? — 2 = 0, which i
descw.].

So now take a nice model M of ZFC: countable and transitive. We want to extend it/so
that it fails CH. What does that mean? We need an extension N such that

N E|P(N)| > X;.

So if we can somehow find an extension N O M that adds enough subsets of the natural
numbers, then we are done.

Let’s start off by adding one subset first. Every subset of the naturals can be expressed as

an N-sequence of natural numbers. Hence E.g.: (O /[ [ O/ [/O p [/ .. )
~ oN ——‘S '
P(N) =2 ——— 51/3/5\/97._,16
3.2. Cohen Forcing. Consider the set of finite partial functions from w yo {0,1}. We denote

Each subset of N that is in M is a union of such finite partial fun
P(N)M is countable (viewed from the outside). So M misses subsets.

QCR. S

. *  Definition 21. A subset G C P is a filter if:

3 epeGandp<qthenqgeG;
® p,q € G then there is r € G such that r < p, q.
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Draw the complete binary tree,
and indicate what a filter can and St- CC(?/

= S:‘, cannot look like.
= ¢ W, Du\/\&% \3@ ,"b )‘su-f Cownve
focz™. —
Deﬁnltlon 22. A subset D C P is called dense if for any p € P there is ¢ € D such that q < p. j
"\wdi g

So dense sets cannot be avoided! Finally. a filter is called M-generic if it meets every
dense subset of P that is in M. o

For example, the set
e ={peP|pn)=0vpn)=1} 0)3“3 ‘”‘fﬁda#é%
is dense (easy check). Eqnall_ / 5 C@U»J’L @

Eno={peP|3In>mp(n)=0)} " -

is dense, and the same for FE,,;. So an A -generic G is not eventually (()11%(11
Theorem 23. If P is nice and G is M-generic, then G & M. /Y Oel/\«&'l s
Compare this with v/2 not being in Q. We now also see: if f € (2MYM then
Fr={peP 3k £ f0)} [

is dense. D {{'L® /). /\,(HE e 'f’ @ S‘- (q)/'\b e/va Z(A/K ’;k-—/V

Now suppose G is M-generic. Then we can construct a model M[G] that extends M by P’(’("f !
defining names. G decides how those names are interpreted. based on its elements So it

depenmwhat the elements of M[G] are.
. ' Ua
Some facts:
[ ZJ

M c MIG];

G € M[G];

M([G] is the least transitive model extension of M containing G:
M and MGl have the same ordinals (so they arg nicely behaved);
MG is an end-exte€nsion: elerments in M do 1ot gain niew eléments (“what about P(N)
and P(N)M?7,

Theorem 24. For Cohen forcing, |JG € M[G] and |JG € 2V and differs from every subset of
naturals in M. ' ?‘JOM

1 A

(—wallov} ovn (1)

Proof. First part follows from union axidm. Let fG = |JG. Now fg is defined on all of w
since G meets every D,. Suppose fg is not a function; so there is n such that p,q € G and
p(n) # g(n). But then p,q have no common extension in G, so G is not a filter. Finally. let

f € (2¥)M. Then Fy is dense, so there is p € G N Fy. Thus fg # f. O
So here we are: we have added a subset of the natural numbers. We say. we have added a
Cohen real. L/Q

L
In order to violate CH. we have to add Ry-many reals. How could we do that? We build pLD ((*
approximations to Ng-many new reals, not just one. Within M, we look at finite partial 6;&_'
functions from «we—x+e into the set {0, 1}. 'LC—QL/\

1"'¢By the same zargugé\%t, we can show that, in the extension, we get No-many distinct reals. mq ¢

So. the extension M [G] satisfies |P(N)| > Ry. Not so fast...

What we have shown is that

MIG]F [P(N)| > &)
which is not quite what we need. We also have to show that our forcing notion does not collapge
cardinals: we need N} = NQI[G]. Note that neither of these is the actual Ny which lives in WGl
and is actually uncountable. Who says we didn’t acmdentally add a function that maps w fo ﬂ/’[ 4y, /¢

wi? surjectively? Then wi? would be countable in M[G] so wd! # wM @

L Pa}/eq‘[




But this follows from the countable chain condition, and is shown combinatorially. This
~ completes the proof:

Fheorem 25. If ZFC is consistent, then so is ZFC+— CH. (

——

Set-theoretical forcing is versatile: almost any partially ordered set can be a forcing notion.
And different forcing notions yield different properties of the generics (computability theory:
n-generics, for example).

Some relative consistency results due to forcing. Assuming consistency of the ZFC-fragment.
also consistent is:

e ZFC+—-GCH (follows straight from the above);

o /F4+V # L;

e ZF +LM (Solovay model; every set of reals is Lebesgue measurable; cannot satisfy AC
since Vitali’s construction uses AC to find sets that aren’t measurable; this actually also
needs an inaccessible (so large) cardinal axiom);

e Kleene-Post theorem; the fact that there are incomparable Turing degrees is essentially
a forcing argument (but predates Cohen’s results, so wasn’t immediately recognised as
such).

Note that models of all of these theories still model all of mathematics!

Limitations of forcing: we can only add sets, not take any away; we are looking at extensions
after all. So for example, we will never be able to turn a countable set uncountable.

But its power lies in its combinatorial structure, and the fact that we can define partial
orders ad hoc When$ver needed, and use its conditions as approximations to build the generic
we need.



