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1 Introduction

Martino and T have been working on questions involving Topology, Algebra,
and Logic. The connections are somewhat natural in the classical sense.
We use algebra to answer topological questions. Fixing objects of a sct
theoretical nature that arc subject to limitations courtesy of ZFC (Baire
space, ordinals) allows another angle of approach. Set theoretical tools can
now affect the topological properties.

/—\
[ Topology Algebra ] +— Logic
~____—

We outline an example: consider simplicial homology. This can be
likened to graphs: A simplex is a set of points in R™. A sct of n 4+ 1
points yields n n-dimensional simplex in R™. A simplicial complex is a set
of simplices that is closed under taking intersections and faces. Example:

25 pr/ef(

3-simplex, two adjoined 3-simplices

e

the complex does not contain simplices containing &’ points.
The sct of k-chains is given by lincar combinations of k-simplices. So

L Gy (K) = {\v' | v is an r-simplex, \ € Z}

g
so it is the frec™group generated by the r-simplices. Homology is all about
finding nice holes in the simplicial complex. In the standard 3-complex,

we expect the interior (i.e. the points that are not on any of the three 2-
simplices) to form a hole. The homology groups pick those up. So, here we



expect Ha(K') to be isomorphic to the integers (as a guide, the rank of the

homology group should give the number of holes).

The boundary homomorphism d" maps r-chains to r — l-chains. In
particular, given any r-chain z, its image d"(x) is an r — 1-boundary. Chains
that are mapped to 0 are called cycles. The r-th homology group is the group

of r-cycles modulo r-boundaries. So é ”a /
~
Z.(K)/B,(K) = ker(d")/ im(d" ") ’

T~y /

with boundary homomorphisms connecting the chain complexes.

H.(K)
Thus we get a sequence of the following form:

A hy
0« CQ(K) «— Cl(IX’) — CQ(K)

3-simplex minus interior

Indeed, by definition H;(K)
have that

Z1(K)/B1(K). Again by definition we

Z1(K) =ker(d') = {z € C1(K) | d*(z) = 0}
which we can calculate straight away: write v;; in place of (v, v;). Then
C1(K) = {ave1 + fviz + v | o, B,y € Z}
and so cycles are such combinations satisfying
d'(z) =0 < alvy —vg) + Blva — v1) = v(vp — v2) =0
and solving for parameters we obtain

vo(—a+7v) +vi(a—B)+v2(B8—7)=0)
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Solving this system we obtain that all solutions are given by tuples

(a3 o)=ALa
At N

)
2 g Ty =7

for s € Z. Thus

s
Z1(K) = {Avo1 +viz+v) | N EZ} & E.

Since there are no 2-simplices in K we deduce that Bi(K) = 0 and thus
H{(K)=Z(K) = Z, as expected.

Two 3-simplices minus interior
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In this case we go through the motions and show that the first homology
group is indeed gencrated by two cycles (not three), and the group is iso-
morphic to Z & Z (which underlines our intuition about the rank coinciding
with the number of holes).

By this reasoning, we would hope that the torus’ simplicial homology
groups have rank 2 in dimension 1 and one in dimension 2 (since T? has two
1-dimensional holes and one open vacuum).
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A space is triangulable if there is a simplex whose underlying space (as
a subspace of R") is homecomorphic to it. One can show that the torus is
triangulable, and thus use simplicial homology to count its holes.
Homology groups are topological invariants.

2 Cohomology

Cohomology is the dual notion of homology. It allows for more complex
algebraic structure (and can hence be considered a stronger or richer topo-
logical invariant) in the sense that the cup/product allows us to combine
cocycles of differing dimensions. d

When considering the ordinals, #hi about the combina-

torial properties of ordinals wy,.
We fix as our space X a@ ordinal 4.

is an open cover of 4. red a decomposition of the space
just like a triangulat]
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Usually a stronger topological invariant — cup product allows for
ring structure of Cohomology groups (where the cup product acts
a multiplication), hence more algebraic tools applicable.
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The remainder of this section contains a rather simple example of Borel (even F,) subgroup of
2N which is not an RN-group. The example is based on a construction, due to Hjorth, which we
applied with a similar purpose in mind to other groups in [7, 23].

Let S = 2<N be all finite dyadic sequences. For z € 2V, define f(z) = {c; | m: m € N} (this is
a branch in S, of course). Let W denote the set of all pairs (z, S) € 2V x 2° such that

p=uwi Nag ... Ay and S = f(z1) A f(za) A... A f(zy,),

where z; € 2N for all 7. It is clear that W is a subgroup of 2 x 25, where 2N and 2° are viewed as
groups with the symmetric difference as the operation.

For x € 2" define W, = {S € P(S): (z,S) € W}. Obviously, G = W is an F, subgroup of the
group 2V (not an ideal, of course), while every W, is a “shift” of G: W, = {SA S': S’ € G} for
each S € W,. In addition, we have f(z) € W, by definition, so that f is a Borel G-approximate
homomorphism.

Lemma 42. There is no continuous homomorphism g: 2N — 25 which G-approzimates f.
Therefore, G is not an RN-group.

Proof. Suppose on the contrary that g is such a homomorphism. Then, by Proposition 39,
there is a family of finite sets u; C N (where s € S) such that, given z € 2N and s € S,
g(z)(s) = 1 holds if and only if #(us Nz) is an odd number. (Each z € 2" is identified with
the set {n: z(n) = 1}.)

Since g has a value in every set W, the set U = {s € S: u; # @} cannot be covered by a finite
number of branches in S. It follows that there is an infinite set A C U which is an antichain in S. It
is known that in this case there exist an infinite set A’ C A and a finite set v such that us Nuy = v
for any pair of different s,s’ € A’. Then obviously there is z € 2" such that #(u, N z) is odd for
every s € A’; therefore, A" C g(z), which contradicts the fact that A’ is an infinite antichain. O

11. MEASURABLE COCYCLES AND COHOMOLOGIES

If A, H are abelian (additive) groups, then any map C: A? — H satisfying
@ C(z,y) = Cly, ) and C(,y) + C(z +y,2) = C(z,2) + C(z + 2,9)

is called an (abelian) cocycle (more exactly, 2-cocycle)?* of A over H. For instance, given a mapping
n: A — H, the function Cyp(z,y) = n(z) + n(y) — n(z + y) is a cocycle; cocycles of this kind are
called coboundaries. Cocycles form an abelian group Z2(A, H) with the operation (C; +Cs)(z,y) =
Ci(z,y)+ Ca(z,y) (for all 2,y € A), while coboundaries form its subgroup B?(A, H). The quotient
group H?(A, H) = Z%(A,H)/B?(A, H) is the second cohomology group of A over H.

It is convenient here to take some time for a few simple facts, definitions, and remarks which
will be used below. We begin with the following.

@76 have C(0,y) = C(0, z) for all y, z; indeed, put z =0 in 1*.
If C: A2 — H is a cocycle then we can define, by induction on n > 2, a value C(z1,...,z,) € H
for any tuple z1,...,z, € A as follows:

3. (.’Bl, wiwy Ly :L'n+1) = C(:El, iws ,J}n) + C($1 Fus s F Bp $n+1).
Define, in addition, C(z) = 0 for all z € A. Then we have

24We consider here only this special type of cocycles.
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4. C(z1,. oy Try Y15+« » Ym) =C(z1,...,2n) +C(y1,...,ym) + C(z,y), where & = z1 + ...+ z,,
andy =y; +... + ym.

(Indeed, let, for brevity, x be x1,...,2,, and s = 1 + ... + z,. Arguing by induction on m, we
apply 1* for m = 1. As for the inductive step, assume that

Cx,y15-+,Ym-1) = C(X) + C(y1,- -, Ym-1) + C(8, 91 + . .. + Y1)

Adding C(s+y1 + ... + Ym—1,Ym), we have C(X,y1,...,ym) on the left, and
CE+CWL, - Ym=1) F CYm 1 + - F Ym1) + C(s, 91+ ...+ Ym)

on the right-hand side by 1*, which is equal to the right-hand side of 4* by 1*.)

Cocycles (including those of much more general form than we consider here) belong to the cate-
gory of most important algebraic objects. (We refer to the monographs of Cartan and Eilenberg [4,
XIV] and Serr [30, VII].) In particular they are used in the theory of group extensions. Indeed, if
A, H are abelian groups and C: A2 — H is a cocycle, then we can define an abelian group, say Pe,

with the underlying set A x H and the operation J.o £ JS

(a,h) +c (a', 1) = (a+d', b + B + Cla, a)), %\//

the associativity of which follows from 1*. Now (1) H is a subgroup of Pg (employ the ;mbedding
k — (0,k #~C"(0,0))), and (2) A is isomorphic to Pc/H (employ the map a — {a} x H), ie.,
Fc is an extension of A with kernel H. Conversely, any abelian group P satisfying (1) and (2) is
presentable as Pc for a map C: A2 — H, and the associativity of the operation implies that C
is a cocycle. Further, two extensions, say P and Pgr, are cohomological if (A x H;4+¢) converts
to (A x H;+cr) by a simple shift (a,h) — (a,h + n(a)), where n: A — H, which is equivalent to
the requirement that C'— C” is a coboundary Cj; this leads to the cohomology group H2(A, H), of
course.

Suppose that the groups A, H considered are Borel (see Section 1). A cocycle C: A2 -+ H
is called Borel if it is Borel as a map. Accordingly, a Borel coboundary is any coboundary of the
form O}, where the map n: A — H is Borel. Similar definitions are assumed for the other forms of
measurability: Baire measurability and the measurability in the sense of a measure 1

The goal of the following part of the paper is to study measurable, in particular, Borel cocycles
and coboundaries. We prove in Section 12 a theorem on relationships between “small” measurable
cocycles and coboundaries, which in a sense generalizes the abelian case in Theorem 10. Second,
we study the group H%OI(A, H) of Borel cohomologies, i.e., the quotient of the group of all Borel
cocycles C: A2 — H modulo the subgroup of all Borel coboundaries;?> this group reflects the
structure of Borel extensions of A with kernel H. We will prove that the group HZ_ (R, G) is trivial,
whenever G is a countable subgroup of the additive group of R, while the group H2 . (2N, 2N) is
more complicated.

12. “SMALL” COCYCLES AND COBOUNDARIES

Coming back to the case considered in Section 4, let A, p, H = [I.en Hy be as in (*) of Section 4,
and let ¢ be an F-submeasure on N. In addition, we assume that the groups A and H (then all H,,)
are abelian.

?5See Moore [29] or Du Pre [10].
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1. MOTIVATION
Let A, H be abelian groups. We consider maps of the following form:

Definition 1. 4 map C: A? — H is called an abelian cocycle if
e C(z,y) =C(y,x);
o Clz,y)+Cx+y,2) =C(z,2) + Clz + z,y).
We recursively define
o C(zo,...,xny1) =Clxo,...,2n) +C(xo+ ...+ Tp,Tni1)
and set C(x) = 0.

The abelian cocycles of the form C': A2 — H (as defined above) we shall consider

below appear prominently in the theory of group extensions. é/@/ ( i

Definition 2. Let G be a group. Then E extends A by H if the following is
short exact sequence in the category of groups: /\-J

00— H—FE — A——0 a
In particular, all arrows are group homomorphisms. Then in particular there is a (,
normal subgroup N < E such that H = N and A= E/N.

We also say that E is an extension of A with kernel H. //JLJ
Now let C' be an abelian cocycle. Define the group P on the ground set A x H J
as follows:

(a.h) +¢c (d' W) =(a+d h+h +Cla,d))

For convenience, define ¢y = C(0,0). Observe that ¢ = C(x,0) for any z € A.

This helds since C(z +y.0) = C(z,0) + C(z + 0,y) — C(x,y).
b-@ Pc is a group.

Proof. For associativity, recall C(z,y) +C(z +y,2) = C(z,z) + C(x + z,y). Then
2z = (a,h) and 2, 2" defined similarly, we have

r4c (@ +c2”) = (a,h) +c (@ +d" W + 1" +C(d +d"))
={a+(d+d"),h+h +h"+C(d,d")+Cla,d +a"))
={(a+d)+d", (h+1h +Cla,d))+ 1" +Cla+d, ad"))
=(z+c ') +ca”
as needed.
The identity in P¢ is (0, —¢g) as
(a.h) +¢ (0, —co) = (a,h — co + C(a,0))
and since C(z,0) = C(y.0) = ¢o for all z,y € A.
For inverses, let (a.h) € Pc; then its inverse is given by

(—a,—(h+ C(a,—a) + cp))

Date: May 17, 2021.
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We hence obtain
(a,h) +c (=a,—(h+ C(a,—a) + co)) = (0,h — (h + C(a, —a) + cy) + C(a, —a))
= <0 —C()>

as required. [i2]

i thiesi s a group extension of A.
PC is an extension of A by (or with kernel) H.

Proof. Define an embedding i: H — P by i(h) = (0, h—cp). This is an embedding:
it is clearly injective, and a homomorphism since

i(h) +c i(h") = (0,h — co) +c (0,h' — co)
=(0,h+h' —2cy+ co)
=(0.h+ 1 —cp)
=i(h+ 1)

as needed.

The map ¢q: Po — A given by ¢({a,h)) = a is a surjective group homomorphism:
it is surjective since (a,0) € ¢ 1[{a}]. And to see that ¢, the natural projection, is
a homomorphism, observe that

q({a,h) +c (d' . 1)) =q({a+d  h+ 1 + C(a.d"))
=a+ad
=q((a, b)) +q((d’, 1))
as needed.

Finally, Observe that ker(¢) = im(7): for the left-to-right direction, note that
q({a,h)) = 0 implies that @ = 0. Then (a,h) = (0,h) = i(h + ¢y), and hence
(a,h) € im(¢). Similarly, g(i(h)) = ¢((0,h — ¢g)) = 0, which proves the reverse
inclusion. O

Definition 3. Letn: A — H. Cocycles of the form Cy(z.y) = n(x)+n(y)—n(z+y)
are called coboundaries. Two cocycles are called cohomological if they differ by a
coboundary. So C ~ C" if C —C' = C,, for somen: A— H.

Definition 4. Suppose Pc and Pcr are extensions of A with kernel H. Then we
say that Pc and Pc:r are cohomological if there is an isomorphism ¢: Pc — Pco
such that ¢({a,h)) = (a,h +n(a)) for somen: A — H.

This indeed makes sense: suppose Pc and P are cohomological via 7. Then
o((a,h) +c (d' 1)) =p({a+d h+H +C(a,d)))
=(a+d.h+h +C(a.d)+nla+d))
and similarly
¢((a, h)) +cr p((d'. 1)) = (a, h +n(a)) +c* (d', b +n(d))
=(a+d,h+h +n(a)+nld)+C'(a,d))

Since ¢ is a homomorphism, we have C(a,d’) — C'(a,d’) = n(a) +n(a’) —n(a+a’).
In other words, C'— C" = C,,, a coboundary. Thus chomological group extensions
yield cohgmological cocycles.

indeey the converse holds, too: we may deduce that

Lemma 2.

homological cocycles generate equivalent group extensions.
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Proof. We claim that the induced isomorphism ¢: Pe — Pcr with map n: A — H
makes the following diagram commute:

Pc
i X
- —-H @ A —0
NS
Per

Indeed, recall that i(z) = (0,2 — C(0,0)) and ¢'(z) = (0,2 — C’(0,0)), and that g
and ¢’ are the canonical projection maps. Then

o(i(h)) = ¢((0.h = C(0,0)))
= (0,h — C(0,0) + n(0)).
Now recall that C' and C” are cohomological via 7, and thus that

C(z,y) — C'(z,y) = n(x) + n(y) — n(z +y).

Therefore
C(0.0) = €'(0,0) = 7(0) + 1(0) — (0 +0)
=(0)
and so
() = 0.1 — C'(0,0))
= (0,2 — (€(0,0) —n(0)))

proving commutativity.
The argument for the other diagram is very similar. Hence cohomological cocy-
cles generate cohomological extensions, which in turn are equivalent. (]

Thus we may characterise coboundaries by cohomological group extensions Pc
of A with kernel H.

Details about this can be found in [Fucl5, 9.1]. The following lemma appears
there implicitly.

Lemma 3. If P is abelian, H < P and A = P/H then P = P¢ for some C: A%> —
H.

Proof. First note that P is abelian, and hence H is normal. And as A is the quotient
of abelian groups, it is also abelian. Now consider the short exact sequence

0 yH 5P 254 > 0
where 7 is the canonical inclusion map. Define
fiA=>P
so that
fla) € ¢ [{a}]
(this is sometimes called a transversal) and hence let
Cl(a.b) = fa) + f(b) — fla+0).

We demand that f(0) = 0, which we may assume without complications. We
confirm that this map C' is a cocycle:
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e Since A and P are abelian we have

C(a,b) = f(a) + f(b) = f(a+D)
= f(0) + f(a) = f(b+a)
= C(b,a)

and so (' is commutative in 1ts coefficients.
e Similarly, we have

Ca,b) +C(a+b,c)= f(a)+ f(b) — fla+b)+ fla+b) + f(c) = fla+b+¢)
f(a) + f(0) + f(c) — fla+b+¢)

= f(a) + f(b) + f(c) = fla+ec+b) + fla+c) = fla+o)

=C(a,c)+Cla+c.b)

again since A and P are abelian.
In particular, we show that

Claim 1. im(C) C H

Proof of Claim 1. By definition of f we have g(f(a)+f(b)—f(a+b)) = a+b—a—b=
0, i.e. C(a.b) € ker(q). But the sequence above is short exact, so ker(g) = im(i).
Since 7 is the canonical inclusion map we have im(7) = H, so we are done. .

Therefore C: A®> — H.

We are left to show that P = P for the cocycle C' we have just defined. Recall
that Pc is defined on A x H. Hence define

p: P— Pco
by
p(z) = (g(x), = = f(g(x))).
Observe that ¢ is a homomorphism: if +¢ denotes addition in Pc then

ol +y) = (gl +y), (z+y) - flglz +y)))

= (q(z) + q(y),x +y — fla(z) +q(v)))

= (g(z) + q(y).x +y — (f(g(x)) + f(a(y)) = Cla(z),q(y))))
= (g(z) + qly),x — f(q(x)) +y = fg(y)) + Cla(x).4(y)))
= (q(z). = = f(q(2))) +c (9(y).y — f(a(y)))

= p(z) +c »(y)

by definition of said addition in Pc.

By the Five Lemma, it suffices to show that the diagram

Pc

commutes. Then the group extensions P and P are in fact equivalent; precisely
what we need. Recall that Pe, as a set, is defined on A x H, hence ¢" and ¢’ are
the obvious maps: i'(h) = (0, h) and ¢'({a,h)) = a.



BOREL COHOMOLOGY OF R"™ OVER COUNTABLE GROUPS

o

e For the left-hand triangle, note that ¢(i(h)) = ¢(h) = (g(h),h — f(q(h))).
Since im(i) = ker(q) we have ¢(h) = 0; we assumed that f(0) = 0, and so

p(h) = (0. h).
° Ofn lthe other hand, ¢'(¢(x)) = ¢'((¢(z),z — f(g(x))) = g(x) by definition
of ¢'.

This completes the argnment; by the Five Lemma, ¢ is an isomorphism, and we
are done. g

2. CONSTRUCTING COBOUNDARIES IN R

Let C be an abelian Borel cocycle between R? and a countable abelian group G.
Under which conditions is C' a Borel coboundary? Kanovei and Reeken showed in
[KRO00] the following:

Theorem 1 (Thm 49, Kanovei-Reeken). If C: R? — G is an abelian cocycle where
G is a countable abelian group, then C' is in fact a Borel coboundary.

For (x1,...,7,) € R™ we write x. We also use standard notation regarding
category arguments: By V*x € UP(x) we mean there is a comeagre set C' € U such
that for every 2 € C' we have P(x). Here is a general argument:

Lemma 4. Consider R™ for some m > 1. Suppose C: R™ x R™ — G is Borel,
where G = {gn | n < w} is countable. There exists an open set U C R*™ and § € G
such that if (x,y) € U is generic in U then C(x.y) = g.

Proof. View this topologically: the statement asserts the existence of an open set
U c R*™ and a dense-in-U Gs-set Y C U such that if (x.y) € Y then C(x.y) = §.
We may write

R?™ = U{X" |n < w}

where X, = C7![{g,}] since C is total. Also, since C is Borel, there is a dense
Gs-set Y C R®™ on which C is continuous. Put C = C | Y, and hence consider
the partition

Y= U{X“ |n <w}

where this time X,, = C~'[{gn}]. Now each X, is closed, by continuity of a.
Since Y’ is a Gy, it is Polish and thus not a countable union of nowhere dense
sets. Thus there exists n < w for which X,, contains a non-empty open-in-Y’
set, Y = U' NY’ say. We may freely assume that U’ is basic open in R®*™, so
U'= (I3 X...xIn)x(J1 x...xJy) where I;, J; are open intervals. As Y is dense
in R?™, it is in particular dense in I; x ... X Jp,. so Y is dense in U’ and clearly
a Gs (if Y’ = (B, where each B, is open in R*™ then U'NY’ = (U’ N By,)).
AsY C X,, if (x,y) € Y then C(x,y) = gn. So V*(x,y) € U'(C(x,¥) = gn) as
required. O

We may also consider the recursive extensions of C'.
Lemma 5. As defined above, if C: R? = G is Borel then so is C: R™ — G.

Proof. Of course, we assume G to have the discrete topology. Thus addition in
G is continuous. As every continuous map is Borel, and Borel maps are closed
under composition, recalling that C(z1,...,2,) = C(x1,22) + C(21 + 22, 23) +
.+ C(xy+ 22+ ... + X pm_1,2y) proves the result. O

We aim to control the position of generics in a very precise manner. The Rasiowa-
Sikorski lemma allows us to do just that. As always, we assume M is countable.
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14. BOREL COHOMOLOGY OF R OVER COUNTABLE GROUPS

Below, R will denote the additive group of the reals. This section contains a proof of the
following theorem.

Theorem( 49. Zet G be a countable abelian group. Then every Borel cocycle C: R? — G is
a Borel coboundary; i.e., there exists a Borel function h: R — G such that C = Cj,.%% It follows
that the group H3 (R, G) is trivial.

The case G = Z (integers) in Theorem 49 was proposed by D. Marker as an open problem.??
Before the proof starts, we present two corollaries.

Theorem 50. Let G C R be a countable group and f: R — R be a Borel G-approzimate
homomorphism.?® Then there ezists r € R such that f(z) —rz € G for all x.

Theorem 51. Let B be a Borel abelian ordered group having a countable subgroup G as the
largest convex subgroup, and B/G be order isomorphic to R. Then B is Borel isomorphic, as
an ordered group, to the product R x G with the lexicographical order. [

The derivation of Theorem 51 from Theorem 49 (see [7]) is too complicated to be presented here.
On the contrary, Theorem 50, proved in [23], follows easily. Indeed, if a map f is as in Theorem 50,
then we apply Theorem 49 to the cocycle C¢(z,y) = f(z) + f(y) — f(z +y). (Clearly Cj is already
a coboundary, yet its generating function f maps R in R but not in G.) Theorem 49 implies that
Cy = C}, for some Borel h: R — G. Then g(z) = f(z) — h(z) is a Borel map R — R satisfying
Cy(z,y) = 0 for all z; i.e., g is a homomorphism R — R. Then g is continuous by the Pettis
theorem, which easily implies that g(z) = rz for some r. Finally, f(z) — g(z) = h(z) € G; hence, g
G-approximates f.

Proof of Theorem 49. Let us fix a group G and a cocycle C' as in Theorem 49. The
operation and the neutral element of G will be denoted by + and 0; this will not lead to confusion
with the operation and 0 of the additive group of R.

Choose a real z € R which effectively codes the Borel map C. Fix a c.t.m. 91 of a big enough
finite fragment of ZFC which contains z and G. The definition of M[z,y,...] and the notion of
(Cohen) generic and {z,y,...}-generic elements with respect to reals and their finite sequences are
introduced exactly as in the proof of Theorem 45, assuming that the Cohen forcing is defined as the
set of all nonempty rational open intervals (a,b) in R. (Smaller intervals are stronger conditions,
as usual.)

By the countability of G, there exist rational intervals I and J and an element § € G such that
I lies at the right of 0 and is shorter than J, and C(a,b) = g holds for each generic (over 1) pair
(a,b) € T x J.

Lemma 52. Ifrealszi,...,zn,y1,...,Yn € I are genericand z1+ ...+ 2y =y1 + ... + Yn,
then Gz, ... ,Bn) = C(Wi ey Qn)s

Recall that the value C(zy,...,2,) (here € G) was defined, for any “arity” n > 3 and for all z;
(here € R), by 3* of Section 11.

Proof of Lemma 52. The proof goes by induction on n. We begin with n = 2. Let
z,y,2',y' € I be generic and = +y = =’ + ¢/'; prove that C(z,y) = C(«', ).

28Recall that Ch(z,y) = h(z) + h(y) — h(z + y) for all z, y.
29Marker, D., private communication, 1998.
30This means that f(z) + f(y) — f(z +y) € G for all z,y € R.
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contains “many” objects satisfying a specific property. Many can
mean: the set has measure 1, the set is comeagre, etc. This is related
to forcing: elements in the comeagre set are called generic!
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We suppose that z < 2’ < y' < y. As I is shorter than J, there is a {z,z',y,y'}-generic real
number o € J such that o = a+ (2’ —z) € J. Then each of the pairs (z, o), (y, o), (z/, &), (¥, )
is generic by the forcing product theorem. Therefore,

Clz,y,a,0') = C(z,0') + C(y, @) + Cz + &,y + @) = 2§ + C(7,7),
C(a',y', 0,0 ) =C(z,0) + Oy, &) + O’ + o,y + &) =25 + C(v,7)
by 4* of Section 11, where y =z + o =2’ + aand ¥ =y + a =y + & hence, C(z,y,a,a’) =
C(z',y',a,a’). On the other hand, still by 4* of Section 11,
C(a',y, a,0') = Cla',y) + Cla, @) + C(¢' + ¢/, a + &),
so that C(z,y) = C(z',y') because z + y = 2’ + ¢/'.
Now, the induction step. Let z; +... + 2z, + 2pt1 =vy1 + ... + Yn + Yna1. First, consider the

case Tp41 = Yn+t1. Then, z1+...+ 2 =y1 + ...+ yp; hence, C(z1,...,2,) = C(y1,---,Yn) by the
inductive hypothesis. On the other hand, by definition,

C(z1y- -y Znynt1) = C(z1,...,20) + Clz1 + .. . + Ty, Ta1),

and the same for C(y1,...,Yn,Yn+1), as required.

Now consider the general case. Let z; and y; be the least, and z,; and y,+; the largest among
the numbers, respectively, x;, y;. Let, for instance, z; < y;. Take any {z1,y1,...,Zn+1,Yn+1}-gen-
eric real € > 0 satisfying € < y; — 21 and such that y,11 +J still belongs to I, where § = y; —z1 —¢.
Define z} and y; so that

! / / !
Ty =71 t+¢€, Tpt1 = Tn+l — &, Y1 =11 — 6, Ynt+1 = Yn+1+0

these reals are generic by the choice of ¢), leaving z) = z; and vy, = y; for 2 < k < n. Then
g y g Ty k
T2 = z4 and y) = yo, as in the particular case above; hence,

C(wl,...,an):C’(xll,...,w;H_l) and C(yl,...,ynH)=C(yi,...,yg+1).

Similarly, C(yyy s « s Pnai) = @1+ 5 8h0q1); becatise 3y =@, O
If ke Gand m €wthenlet m-k=Fk—+ ...+ k in the group G.
S ——
m summands
Lemma 53. Suppose that 1<m<n, 1<m’'<n/, and generic reals 1,...,Tn,Y1,...,Yym €I
and 4, ...,z YL, ...,y € I satisfy

Tl ww B = ne. Yy =8 and 4.tz =Y+ 4y, =8

Then
(n' =m')- (C(z1,...,2n) = C(y1,---,ym)) = (n—m) - (C(z},...,z5) — C(y1,-- -, Ym)) -

Proof. If z is a finite sequence of reals (perhaps with only one term), then let z[™ be the
sequence of m successive copies of z, say, (m,y)[z] = {&3;8;9): Let X = {&15.+0,8p): Define
x', y, y' similarly. Then C(x[-™1 y/[*-ml) = ¢ (x/[n=m] y'=m'ly by Lemma 52. (C applies to
strings which consist of nn’ — mm’ terms and the sum equal to (n’ —m')s + (n —m)s’.) According
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to 4 of Section 11, the left-hand and the right-hand sides of the last equality are equal, respectively,

to
CE™) 4+ Oy ™) 4 € (0 - m')s, (n = m)s'),

=) + ey ™ + C ((n - m)s, (n' = m)s),

so that we have
C(" ) 4 o (y'ml) = o) 4 oyl ). (*)

Using induction on I with 4* of Section 11, we find that, for any I, C(xY) = - C(x) + C(s)
and C(y¥) =1- C(y) + C(sY); therefore,

CM™) — oy =) = (1 - m') - (C(x) - C(y)).

Similarly, C(x'[*=™) — C(y'"=™]) = (n—m)- (C(x') = C(y')). We conclude, by (%), that (n' —m/)-
(C(x)—-C(y))=(n—m)  (C(x') = C(y"), as required. O

We come back to the proof of Theorem 49. We have to show that C is a Borel coboundary,
ie., C = Cp = h(z) + h(y) — h(z + y) for a suitable Borel “shift” h: R — G. The map h will be
a superposition of three more elementary maps.

There exist a big enough natural p and generic reals z,y € I such that py = (p+1)z. An element
g = C(zP™) — C(yl?)) € G (hence, € M) satisfies C(z1,...,20) = C(y1,-.-,ym) = (n—m) - § by
Lemma 53 whenever 1 < m < n and the reals r;,y; € I are generic and satisfy z; +... + z, =
yit...+Yn.

Step 1. Let hi(z) = —g and Cy(z,y) = C(z,y) + Ch,(z,y) = C(z,y) — g. Since the difference
between C' and Cj is a Borel coboundary Cj,,, to prove Theorem 49 it suffices to demonstrate that
Ci(z,y) also is a Borel coboundary, i.e., C; = C}, for a Borel map h: R? — G.

Corollary 54. If generic reals 1,...,Tn,Y1,...,ym € [ salisfy 1 +...+Tp =y1+ ...+ Ym
then C1(z1,...,20) = C1{y1,- -, Ym).

Proof. We have Cj,(z1,...,2,) = —(r — 1) - g; hence,

Ci(21s.+5%n) — C1{Y1s+ - 3 Ym) = C@15. -, Tn) — Cly1, ..., ) — (n—m) - § = 0.

(It was supposed that m <mn.) 0O

Recall that the rational interval I = (a,b) lies to the right of 0. Put nl = (na,nb). There is
anumber M > bsuch that [M,+o00) C |J,, nI. Take any z > M. Then z = z;+...+z, for a suitable
string of generic reals z1,...,z, € I. Put F(z) = Cy(zy,...,z,); according to Corollary 54, this
depends only on x but not on the choice of z1,...,z,. The graph of F is obviously an analytic set;
hence, F': [M,+00) — G is a Borel function.

Step 2. We put ha(z) = F(z) for z > M and hy(z) = 0 for z < M. In particular, ho(z) = 0
for z € I. We note again that, to prove Theorem 49, it now suffices to show that Cy(z,y) =
Ci(z,y) + Chy(x,y) is a Borel coboundary. Note that, by definition, Co(zy,...,z,) = 0 whenever
Z1,...,Zn € I are generic and satisfy 1 +... +z, > M.

Lemma 55. Cy(z,y) =0 for all z,y > M.

Proof. Letz =z +...+z, and y = y1 + ... + y, where z;,y; € I are generic. Applying 4*
of Section 11, we have

CQ(:E]a sy Ty Y1y e e 7yk) = CQ(J:]., v 1$n) ot 02(191, v 7yk:) + 02(3771/)
Yet Co (21,320, Y1,---,Yk) = Co(z1,...,2) = Ca(y1,...,yx) = 0 (see above). [
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Step 3. Put hs(z) = Co(z, My), where M, = max{M, M — z}, so that

Chs (xay) = 02(37’ M:E) + 02(ya My) o 02(1" = yny+y)~ (*)

Lemma 56. Ci(z,y) = Ch,(z,y) for all z, y.

Proof. We have Cy(z,y) = Ca(z,2) + Ca(z + z,y) — Cs3(z + vy, z) for every z; hence, the
difference Ca(z,y) — Ch,(z,y) transforms, using (), to the expression

Ca(z, 2) + Ca(z + 2,y) — Ca(z + 9, 2) — Calz, Mz) — Caly, My) + Ca(z + y, My1y).
We put z = max{M,, My,,, M, — z}. Then, in particular,
Ca(z, 2) — Cao(x, My) = Co(z + 2, My) — Co(z + My, 2) =0

by Lemma 55. Every one of the other two pairs yields 0 similarly. [

To end the proof of Theorem 49, note that the map hy is Borel because so is the map F' (see
above); thus, the map hg: R — G is Borel as well. It follows that C5 is a Borel coboundary by
Lemma 56, as required.

Theorem 49 is proved. [
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